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1. Introduction et énoncé des résultats

Introduite par Hall [4] en 1979 et étudiée de maniére systématique par Hall &
Tenenbaum ([6], [7]), la fonction

T(n,a):= Z 1 (n>1,a€eR)
dln,d'|n
[log(d’/d)|<(log n)™

est une mesure quadratique de la proximité des diviseurs.

On a trivialement 7(n) < T(n, o) < T'(n, 1) = 7(n)? pour tout «, o1y, ici et dans la suite,
7(n) désigne le nombre de diviseurs d’un entier générique n. Le statut de I'inégalité de
gauche pour presque tout entier n est une question difficile qui a inspiré une conjecture
d’Erdé8s (cf. [1]) assez connue. Convenons de désigner par pp (presque partout) une
relation valable sur un ensemble d’entiers de densité unité et posons

T*(n,a) :=T(n,a) — 7(n).

(Cette fonction est mentionnée dans [4], mais sa définition fait 'objet d’une coquille.)
Erdds a conjecturé que T*(n,0) > 0 pp et, en 1964 [2], il a annoncé pouvoir montrer que

(1-1) T*(n,a1) =0 < T*(n,a2) pp (1 <1—1log3 < ag).

Cependant, sa preuve, non publiée, était incomplete. Il fallut attendre 1979 pour que
Erdds & Hall [3] établissent I’assertion relative a a1, et 1983 pour que Maier & Tenenbaum
[8] prouvent celle qui concerne .

11 est établi au chapitre 4 de [7] que la fonction T'(n,0)/7(n) possede une fonction de
répartition H(z) satisfaisant a

log 2z

<1-H(z) < (z=21).

1
z+/log 2z

Il découle de plus des théoremes 40 et 46 de [7] que I'inégalité T*(n,0) > z7(n) a lieu,
pour tout z > 0, sur un ensemble d’entiers n de densité positive.

* Nous incluons ici certaines corrections par rapport a la version publiée.
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Cependant, un récent résultat de Hall [5] implique que
(1-2) T*(n, —a) = o(7(n)) pp (a > 0).

L’approche de Hall, qui ne mentionne d’ailleurs pas cette application, est fondée sur
I’étude de la fonction multiplicative

T(n,9) := Zdw (¥ € R),

d|n

qui n’est autre que la transformée de Fourier—Stieltjes de la fonction croissante

F,(z):= Z 1.

d|n,d<e*
Hall montre que, pour tout « > 0 et tout intervalle I(n) de longueur |I(n)| := (logn)®,
on a
(1:3) [ P ~ i) e,
I(n

mais sa preuve s’adapte sans changement au cas d’un intervalle de longueur c(logn)®
pour toute constante ¢ > 0 fixée.
Pour établir (1-2) a partir de (1-3), nous introduisons les quantités

oo

Ap(n,z):= > 1, My(n;L) ;:/ Ar(n, 2){AL(n,z) — 1} dz.
| log di‘:\ <L/2 -
Un calcul facile fournit
My(m;L)= Y (L~ |log(d/d)])

din,d'|n
0<|log(d' /d)| <L

de sorte que, pour L = L(n) = (logn)~“ et tout « € R,
(1-4) My(n; L)/L < T*(n, —a) < Ma(n;2L)/L.

On a par ailleurs

[e.9]

(1-5) Ms(n; L)/L = / w(W){|7(n,9/L)|* — 7(n)} dv,
avec w(v) := (1/2m)((sin %19)/%19)2, et l’on observe que (1-3), sous la forme légérement

plus générale mentionnée plus haut, équivaut a

b
(1:6) [ A o/LP = r) a0 = ofrm) v

pour tous a, b fixés. Une simple intégration par parties fournit donc, grace au théoreme
de Lebesgue,

Y
[Y w(@){|7(n,9/L)|* = 7(n)} d9 = o(r(n))  pp
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pour chaque Y fixé. D’apres un lemme de Montgomery,Jr on a de plus pour tout a € R
/G—H |7(n,9/L)*dY < 3/11/22 |7(n,9/L)*dY < 7(n) PD,
par (1-6), ce qui implique v
/MY w@®){|r(n. /L) — ()} d0 < r(n)/Y  pp.

11 suit finalement
Ms(n; L)/L = o(r(n))  pp,
d’olt résulte (1-2), grace a (1-4).
Dans ce travail, nous nous proposons de préciser (1-2). Nos résultats font intervenir
une fonction continue croissante = : [0,1] — [0, log 3 — 1] définie par

log3 — 1, 517</£<1
(k) = klog2 —klogk — (1 —k)log(1 — k) — 1, si 171/e<n< ,
/flog(e_l), si0<k<1l—1/e.

On remarque que = est strictement croissante sur [0, %} Nous pouvons donc définir une
fonction G : [0,log3 — 1] — [0, 2] par

G(a) :=E"Y(a) (0<a<log3d—1).
Nous établissons 1’évaluation suivante.
Théoréme 1. On a pour 0 < a <log3 —1
(17) T*(TL7 —Oé) — 7_(n)l—G(a)eO(\/log2 nlogg n) Pp.
Plus précisément, pour tout £, 1 < £ < 4/logy x, on a
(1-8) T*(n, —a) > 7(n)} =G (@etViona®
sauf pour au plus < x/§1/50 entiers n < x, et

(1-9) T*(n,—a) < 7(n )1—G(a>ef\/@

2,.—G(a)?€?/12G" (o)

sauf pour au plus < z(log, )%e entiers n < x.

Il est & noter que 'ordre normal de T*(n, —«) présente une discontinuité en o = log 3—1
puisque par (1-1) on a T*(n,1—log3 —¢) = 0 pp pour tout £ > 0 alors que (1-7) implique
(1-10) T*(n,1 —log3+¢) > 7(n)Y/3T°M  pp.

Nous reviendrons plus loin sur I’explication de ce phénomene.
Désignons par {d i(n)}2 (n ) la suite croissante des diviseurs d’un entier n et posons

= {5+ 1< < (n), log{d; 1 (n) ds ()} < (logn) =}
de sorte que, pour o > 0,
T*(n,—a)/2A(n) < D(n,a) < T*(n, —a)
ou A est la fonction d’Erdés—Hooley définie par
A(n) := max 1.
R

D’apres [9], on sait que, pour toute fonction £(n) — oo, on a A(n) < &(n)logy n pp. Cela
permet donc de déduire du Théoreme 1 le corollaire suivant.

T Voir [10], ou [11] p. 131. Voir aussi les notes pp. 143—144 de [11] pour des précisions historiques
concernant les résultats de ce type et notamment ’apport de Wirsing.
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Corollaire 1. Soit 0 < o <log3 —1. On a
D(n, 04) — 7_(,',[‘)1—6‘(0()60(\/log2nlog3 n) PD-

De plus, les inégalités (1-8) et (1-9) sont valables en remplagant T*(n, —a) par D(n, a),
avec les mémes estimations pour les tailles respectives des ensembles exceptionnels.

A ce stade il est utile de remarquer que, si la comparaison des quantités log(d'/d) &
des puissances fizes de logn permet une bonne visualisation des résultats et suffit pour
la plupart des applications, les méthodes du présent travail n’impliquent nullement une
telle restriction — ainsi que l'attestent les énoncés des Théoremes 4 et 5 aux paragraphes
suivants. Sans chercher la formulation la plus générale, nous indiquons cependant que tous
les énoncés de ce premier paragraphe sont valables sans changement lorsqu’on y remplace
le parametre a par une fonction «., assujettie aux mémes intervalles de variation et
satisfaisant une faible contrainte de régularité, par exemple

Oy, — gy, K 1/4/logyn (n < m < n?).

Ainsi, par exemple, le Corollaire 1 est également valable pour la fonction
Di(n,a):=|{j:1<j<7(n), djt1(n)/d;(n) <1+ (logn)~*}|.

Une spécificité de la fonction T'(n, ) est de compter les rapports d’/d avec multiplicité.
La fonction suivante, également étudiée dans [7],

Un,a) = Z 1

dd'|n, (d,d")=1
[log(d’/d)|< (log n)®

est le pendant non pondéré de T'(n, ). On a en particulier pour a > 0

T(n,a) = Z Z 1> ZU(n/t,a)

tln  dd'|n/t, (d,d")=1 tin
[log(d'/d)|<(logn)®

alors que 'inégalité est inversée lorsque a < 0.
Désignons par Q(n) le nombre des facteurs premiers, comptés avec multiplicité, d’un
entier n. Nous posons pour k > 1

Ui(n,a) = Z 1.

dd'|n, (d,d')=1
0<|log(d’/d)|<(logn)"
Q(dd" )<k

Notre évaluation de T*(n, —«) passe par une estimation de I'ordre normal de U} (n, —«).
On a en fait,

T*(n,a) = Z 7(n/dd")
dd'|n, (d,d')=1
0<|log(d’/d)|<(log n)*

d’ou 'on déduit que, pour tout a € R et tout entier n > 1,

1-11 - ok < T < 28(n) - 2k
(1-11) T(n)lgr&a&n) Uy (n,a)/ (n,a) mc;)( )Uk (n,a)/
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Nous montrons le résultat suivant dans lequel nous notons
2
Rz, &) := (logy x)e™* /1,

Théoréme 2. Soient z > 16, { = &(z) € [1,/logyz], k = k(z) € NN [1,log, ], et
k:=k/logy x.
(i) Pour chaque o < 1 on a

(112) U;:(TL, a) < (log m)E(ﬁ)ﬂ-aeﬁ\/@’

pour tous les entiers n < x sauf au plus < zR(x, ).
(ii) Pour chaque o < min{1,x/(1 —1/e)}, on a

(113) Ui (n,a) > (logz)EW+ae=sVlos e

pour tous les entiers n < x sauf au plus < x/§1/50.

Le résultat suivant, concernant la fonction

Ey.(n) == i d'/d
(n) min /
(d,d")=1, d<d’
Q(dd" )<k (n)

et généralisant le théoréme 54 de [7], est une conséquence immédiate du Théoreme 2.

Corollaire 2. On a pour & € [0, 1]
En(n) = 1+ (logn) =00 (Vioganlogsn)
Plus précisément, si & = £(x) — oo avec £(z) < \/log, @, on a
E.(n) <1+ (log x)_E(“)ef(‘”)\/@
pour tous les entiers n < x sauf au plus < zR(z, ), et
En(n) > 1+ (logz) =We 6@ VIosa

pour tous les entiers n < x sauf au plus < x/§1/50.

La majoration (1-12) précise celle de Hall au lemme 1 de [5]. La minoration (1-13)
répond & la question soulevée dans [5] de I'optimalité de exposant =(x). Hall mentionne
a ce propos, sans 'expliciter, 'existence d’un argument heuristique en faveur de cette
optimalité. Soit s € [k, Q(n)] et m le produit des s plus petits facteurs premiers de n.
On pose k = su avec K < v < 1. On sait que la taille normale de logm est e® (voir, par
exemple, le théoreme 07 de [7] ou l'exercice II1.5.6 de [13]) et, d’apres le théoreme de
Hardy—Ramanujan, que ©(n) est normalement proche de log, n. Or le nombre des couples
(d,d’) de diviseurs de m tels que Q(dd’) < k est au moins égal & (})2F > e?(W)s/\/5, avec
o(u) = ulog(2/u) — (1 — u)log(l — u). En supposant ’équirépartition des quantités
log(d’'/d) pour ces couples de diviseurs, on obtient la minoration heuristique

Up(n,a) = (log n)aeé’(u)S*S/\/g = (log n)a+ﬂ{9(U)*1}/u+0(l).
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Il reste & observer que le maximum de {o(u) — 1}/u sous la contrainte k < u < 1 est
obtenu en u = max(k,1 — 1/e). Cela fournit bien

(1-14) Ui (n, ) > (logn)Etr)FTateld)

Nous notons également que, pour x < % et Z(k) +a > 0, le raisonnement précédent peut
aisément étre modifié pour montrer que (1-14) est heuristiquement une égalité.

La minoration (1-13) du Théoréme 2 pour o = 1 —log3 + ¢ et k = 2 fournit
immédiatement l’explication de la discontinuité de G(«) en 1 — log3 et l'inégalité
(1-10). En effet, pour un entier normal, i.e. tel que w(n) ~ logyn, la fonction
d’Erd8s E(n) := Ei(n) est un minimum réalisé pp pour des diviseurs d, d’ tels que
w(dd') ~ §1og2 n — ce qui est heuristiquement justifié par le fait que cette condition
correspond au maximum de la répartition du nombre des couples (d, d') de diviseurs de n
premiers entre eux. Comme tous les couples (md, md’) avec m|n/dd’ sont comptés dans

T*(n,1 —log3 + ¢), on obtient
T*(’Il, 1— 10g3 + 5) > 2{1/3+o(1)}10g2n _ T(n)1/3+0(1) Pp.

Le lien mentionné plus haut entre la fonction T*(n,—«) et la valeur moyenne de
|7(n,9)]? sur des intervalles de longueur (logn)® laisse augurer que les Théoremes 1
et 2 permettent d’apporter des précisions supplémentaires sur le terme d’erreur implicite
dans (1-3). Nous obtenons le résultat suivant relatif a la fonction

1 a+b
H(n,a) = — su ‘/ Tn,192—7'n dd|.
)= gz | [ e —rte)

0<b<(logn)™

Théoréme 3. Soient { =&(n) >0 et 0 < a<logd3—1.0na
T(n)lfG(a)efgy/logrzn < H(n,a) < T(n)lfa/logQJro(l) pp.

Il est raisonnable de conjecturer que, quitte a y remplacer —¢ par +£, la borne inférieure
fournit aussi un majorant de 'ordre normal de H (n, ), mais une telle estimation semble
hors de portée des méthodes développées dans le présent travail.

2. Preuve du Théoréeme 2 — majorations

En vue d’applications ultérieures, nous établissons un résultat plus général qu’il n’est
nécessaire pour prouver le Théoréme 2(i). Nous posons

Vinit,y):= Yy,

dd'|n, (d,d")=1
0<|log(d'/d)|<t

notons r, := expexp v, et introduisons la fonction multiplicative de n

Ny 1= H pY.

p¥|In, p<Ty
D’apres [14], exercice II1.5.6, on sait que
(2-1) logn, < Re"

sauf pour au plus O(me*R/z) entiers n < x.
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Nous aurons & plusieurs reprises 'occasion d’utiliser le lemme 50.1 de [7], relatif & la

fonction
Q(n,w) :== Z v,

p||n, p<w

et qui stipule que, pour chaque € > 0, on a sup,,>3{Q(n,w) — (1 + ¢)logyw} < T sauf
pour au plus < x (1+¢)~Te~2 entiers n < x. Associée & (2-1), cette estimation implique
facilement que, pour tout & € [0, 1/v], l'inégalité

(22) sup{Q(n, ) — logy d} < 26v/5
d|n,

est valable pour tous les entiers n < z sauf au plus O(acve‘gz/ ). Nous omettons les
détails de la vérification.

Théoréme 4. On a uniformément pour z > 3, 1 < v < logyz, t > 0, 0 < & < /v,

sle—1)<y<1,

1 2 v
(2:3) V(nity) <t(—2) "

sauf peut-étre pour au plus O(xve_fz/n) entiers n < x.

Démonstration. Nous employons la méthode utilisée pour établir le théoréme 50 de [7].
Comme les détails techniques sont tres voisins, nous nous contentons ici d’indications
relativement succinctes.

Nous observons d’abord que ’on peut supposer v > vy et £ > &g, oll vg et & sont des
constantes arbitrairement grandes, puisque le résultat est trivialement vérifié dans le cas
contraire.

Ensuite, nous posons tg := %(e/3)”e‘5ﬁ, t] = %e” et nous remarquons qu’il suffit
d’établir le résultat lorsque tg < ¢t < t1. En effet, lorsque ¢t < tg, Uinégalité (2-3) appliquée
avec y = 1 montre que la somme du membre de gauche est vide. D’autre part, lorsque
t > ty, la relation (2-2) implique que Q(n,) < v + 2£/v avec un nombre acceptable
d’exceptions, d’ou

14 2y\v
Vst y) < (1+2)%0) < 1002 3E/0e,

ce qui fournit la majoration requise pour un choix convenable de &.
Nous supposons donc dorénavant tg < t < t1. Nous posons

Vi(n) = Z 1, Va(n) := Z yQ(dd')7

dln dd'|n
1<d<e! 1<d<d’ <de
de sorte que 1’on a, pour tout n,

V(ny;t,y) < 2Vi(ny) + 2Va(n,).

Il est clair que Vi(n,) =0 si t < log2. Dans le cas contraire, on observe que, par (2-2),

(2-4) Vi(ny) < 99 (n,expt) < Hog29(2/3)¢v/v < it(l +2y)ve€ﬁ
e

des que &y est assez grand.
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Tout couple (d,d") compté dans Va(n,) est tel que
e t/d < 1/d <log(d'/(d —1)) <log(d'/d) < t,
donc d > dy(t) := max(1,e"*/t). On pose
I :=]do(t), max(1,1/t%)], I =] max(1,1/t2), z*/4], Iy =zt Vx),

et Pon désigne par Vs;(n,) la contribution & Va(n,) des couples (d,d’) tels que d € I;.
On a d’abord, en majorant y par 1 dans Va1 (n,)

Z v21(nv) g Z Z

n<z d<1/t2 d<d’<det

1+ 2y\v
< txlog(l+1/t)<tacv( + y) ,
e

ou l'on a utilisé le fait que la somme extérieure est vide si ¢t > 1. Cela implique clairement
que l'inégalité

L4+2Y\" evm
(2:5) Vm(nv)gl—lzt( - )eff

a lieu avec ’estimation requise pour le nombre d’éventuelles exceptions.
Gréce a (2-2), on peut écrire pour j = 2 ou 3 et tout z €]0, 1]

(2-6) Vaj(no) < 27375, (ny)

avec
Vi,

; 7% — Z Z logd') logzyQ(dd')'

dlny, d'|n,/d
del; d<d’ <det

Nous choisirons plus loin la valeur du parametre z.
Considérons d’abord le cas j = 2. On peut écrire

S3p 1= Z V3a(nw)

n<e
U
< § § Sl dd’) IOg d/) log = § Zﬂ(n,d )
dels d<d’<det n<z/dd’
P (d)<ry

Pour tout couple (d,d’) de la sommation, on a dd’ < etd? < '/0z'/? = £3/5. La somme
intérieure est donc

< @(log dl)
11 suit
Q(d) . (log d’ z—1—log 2
(2:7) S5o L @ Z % Z (y2)2 )%
del; d<d’<det

Pr(d)<r,
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Lorsque t > 1, on peut majorer la somme intérieure par sommation d’Abel en utilisant
le lemme 50.2 de [7]. On obtient, sous réserve que

A=A(y,2z)==2(y+1)—2—logz <0,
lestimation < t(logd)?. Lorsque t < 1, on vérifie grace au théoréme de Shiu [12] que la

méme estimation est valable puisque d > 1/t? pour tout d € I5. En reportant dans (2:7),
il suit

Q(d) log d A
Spp <t Y (2)" 0 log d)” d( ogd)”
PH(d)<ry
Nous choisissons z = 1/(2y + 1), de sorte que A = (y+1)/(2y + 1) + log(2y + 1) — 2.
Cette expression est une fonction croissante de y, donc A < log3 — % < 0. Une simple

sommation d’Abel fournit alors

Sy < wtveAty)v — a:tv(

2y +1 )”
S .
Compte tenu de (2-6), cela implique

2+ 1\Y .
ain < (1)

sauf pour au plus O(zve V) avec ¢ = 1 — %10g3 > ﬁ
On procede de maniere semblable pour majorer S35 := anz V34(ny). Nous obtenons
d’abord

* x (yz)Q(d) (yz)ﬂ(d/) 2x z—1
(28) 523 < W Z - Z T(IOg ﬁ) :
+d(§)13< d<d’'<min(etd,z/d)
P STy

En raisonnant comme dans [7], pp 103—104, on montre que la somme intérieure est
2\ %1
)
En reportant dans (2-8) et en utilisant le lemme 50.2 de [7] pour effectuer l'intégration
par parties en tenant compte de la condition P*(d) < r,, on parvient finalement &

2y—|—1)v
e )

t
< —(logd)¥=~! ( log
z

S53 K txv(
pour le choix z = 1/(2y + 1). On conclut comme précédemment que

2y + 1\
Vas(n,) < 1—1275( ye ) eV

avec au plus O(xe’fQ/n) exceptions.
En regroupant nos estimations, nous obtenons bien que (2-3) est valable avec la
majoration annoncée pour le nombre d’exceptions.

Nous sommes maintenant en mesure d’établir Pestimation (1-12) du Théoréme 2. Nous
pouvons supposer kK < % puisque le résultat découle du théoréme 53 de [7] dans le cas
contraire. On a pour tous y €]0,1], z >3, 1 <n < x et k € [1, % log, ]

Ui(n, o) <y *V(nst,y)

avec t := (logn)®*. En comparant ¢t a (logx)® et en faisant appel au Théoréme 4 pour

v = logy x, on obtient immédiatement que, lorsque %(e —-1)<y<1,

Ui (n,a) < (log x)a—nlog y+log(2y+1)—1,&(z)/logy @

sauf peut-étre pour < zR(x,&) entiers n < z. Cela implique le résultat annoncé en
choisissant y = 1 max{x/(1 — k),e — 1}.
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3. Preuve du Théoréeme 2 — minorations

Nous conservons les notations introduites au paragraphe précédent. Nous posons
également
Vi(m;t) == Z p(dd')?.
dd’'|m

w(dd)=k
[log(d'/d)|<t

Nous établissons le résultat suivant, dont (1-13) est une conséquence immédiate.

Théoreme 5. On a uniformément pour x > 3, 1 < v < logyz, 0 < t < e

1<ES Vv 1= 1/e <A< 2 k=,
(3-1) Vi (ny;t) > te=Nv=8ve

sauf peut-étre pour au plus < x/£1/450 entiers n < x.(1)

Remarque. Nous n’avons pas cherché a optimiser la dépendance en £ de la majoration de
I’ensemble exceptionnel.

Avant de passer a la démonstration, nous notons que la minoration du Théoréme 2
pour Uj(n,a) résulte de I'’énoncé précédent en choisissant, lorsque k < glog2 x,
v:=min{l,x/(1 — 1/e)}log, x, ce qui correspond & A = max(x,1 — 1/e).

Démonstration du Théoréme 5. Bien que sensiblement plus technique, la démonstration
est d’une structure essentiellement identique & celle du théoreme 51 de [7]. Aussi nous
renvoyons librement & [7] pour certains détails calculatoires.

Nous pouvons manifestement supposer £, et donc v, assez grand.

Posons
ou(mid) = S p(dd)(d /)",
dd’'|m
w(dd )=k
et, pour y € C,
w(m) .
o(m;v,y) : = Z v’ 0;(m; )

(3-2) =0

= > p(dd)*(d' /d)?y= ) = TT{1 + 2y cos(¥ logp)}.

dd’'|m plm

On note que gr(m;¥) € R pour tous m > 1, ¥ € R. Nous introduisons, pour chaque
valeur du parametre a > 0, les quantités

by =1+ 2a?, by := (14 2a)?/b;.

En fait, nous n’emploierons que des valeurs de a satisfaisant & 1(e —1) < a < 1, de sorte

2
que, notant oo := 2e?/(e* — 2e + 3), on aura toujours

(3'3) oo < by < 3.

1. Suite & une imprécision, l’exposant 1/50 apparait & la place de 1/450 dans la version publiée
de ce travail.
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Posons T = Ty(v) := eZMNv=&V?/2 ¢t notons immédiatement, & fins de référence
ultérieure, que
(34) eE()\)v+v — (1 + 2a>\)va;k

pour k = Av et ay := A/(2 — 2\). Posons encore Q(w) := wlogw —w + 1 (w > 0) et
B :=Q(1/logag) =~ 0,003746.

La premiere étape de la démonstration consiste a établir que pour chaque v, tel que
1<v§log2x,k:/\v,171/e<)\<%etchaquee>00na

Vg

eev

T
(35) | i ao < Y2 g0y
-T
pour tous les entiers n < z sauf au plus < x{e? + £-1/50},
A cette fin, nous utiliserons systématiquement 1’'inégalité

1
z .
(39) om0 <o [ jotmid.at g (a0,
1
~3
qui découle trivialement de (3-2) et de la formule de Parseval.

On établit d’abord que, posant wy(n) ==Y _p<exp(1/]0]) 1, on a pour chaque a €]0, 1]

pln
‘Q(nv;'&vae%ﬂw”? |19|+eiv by’ 4
(37) > <a(Spgr) (Uos+ o}

uniformément pour ¥ € R\ {0}, |¢| < 1, v < log, z, avec b = b(a) := 32a/(1 + 2a)>.
La preuve de (3-7) est identique, mutatis mutandis, & celle du lemme 51.3 de [7] et nous
omettons les détails.

Ensuite, on scinde le domaine d’intégration de (3-5) sous la forme D;UD2UDs5, ot les do-
maines D; correspondent respectivement aux conditions |[J| < e™"/6e, e™?/6e < [¥] <1
et 1 < |9 < T. Désignons par A;(n,) la contribution de D; au membre de gauche
de (3-5). Nous allons montrer que ’on a, pour tous les entiers non exceptionnels,

5 e1/3
(38) Aj(nv) < \/?:Egev Qk(nmo)Q?

et nous observons que le cas j = 1 est trivialement vérifié puisque 'intégrande de (3-5)
n’excede pas gy (n,;0)2.

Pour traiter le cas j = 2, nous appliquons (3-6) avec a = ay = A/(2 —2)\), de sorte que
k =2av/(1 4+ 2a), et nous notons d’abord que l'inégalité

(3-9) v— $/vlogé <w(n,) < v+ 1/ vlogé

a lieu pour tous les entiers n < z sauf peut-étre pour au plus O(x§_1/50).]L On a
0 (i 0)akvo _ fw(n,)) (2000
(1 + 2ay)w(nv) k (1 + 2ay)w(m)”

La formule de Stirling et un simple calcul d’accroissements finis fournissent alors pour
1 < & < /v et tout entier n satisfaisant (3-9)

0k (15 O)al)c\\ﬁ
(1 + 2(1)\)‘“(7%)

(3-10) > T,

t L’énoncé du théoreme 111.3.7 de [13] fournit immédiatement O(x/£1/7%), mais on obtient
la majoration indiquée en insérant dans la démonstration que l'on a Q(1 — w) > w?/2 et
Q(1 4+ w/4) > w?/50 pour 0 < w < 1.
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Ensuite, nous appliquons le lemme 51.2 de [7] qui permet, posant § := 1 + %\/E,
a := d§/log oy, de majorer par O(z<?) le nombre des entiers n pour lesquels I'inégalité

w(ny) —wy(ny) > alog(|vle’) — 1

est en défaut pour au moins une valeur de ¢ € Ds. Pour les entiers non exceptionnels,
on a
(2ax +1) 720 < by, (9fe) =,

ou l'on a utilisé le fait que by > 0. Puisque 'on a aussi by < 3, on déduit de cette
inégalité que

Qk(nv; 19)2 dv
Az(ny) < 3(1 —|—2a>\)2“’(””)/ .
° D, b po () ([9]ev)?
En insérant (3-6) et (3-10), il suit
A (ny) < 3(1 4 2a)2™) a2k A% (n,) < Kvgk(ny; 0)2€5 A5(ny),

ou K est une constante absolue et ou ’on a posé

9, a2 ®) 2 dd
A* n . / / |Qk n117 dgﬁ
’U % Dy W(nv)b‘;ﬂ(nv) (|’L9|ev)6

Par (3-7), on a

! > dY
A% (ny <<x/ / d de
2 A 1 Jemv/6e (|9]ev)?

n<x

e’ du e v
< xe*”/ 5 <Lz =71
1/6: udy/v —logu + 1 Ved/

Il en résulte que A}(n,) < e™¥/(3Ke\/v) sauf pour au plus O(ze!/*) exceptions et donc
que (3-8) est valable pour j = 2 avec la majoration requise pour le nombre d’entiers
exceptionnels.

On a wy(n,) = 0 pour ¥ € D3. Appliquons alors (3:6) avec maintenant a := ,/ay. La
relation (3-10) fournit dans ce cas

(311) aizkbf(m}) < Qk(nv; 0)\/56%
Nous obtenons donc, en tenant compte de (3-6) et (3-9),

bw(nv)

Asz(ny) < 1agk Az(ny)

(312) ) , a2k
< Kvéso(n,;0) ————
£¥0(ny; 0) RREN T
1

Az(no)

pour une constante absolue convenable K, avec

v ¢ 2mip |2
A3 (ny) : /1/D n,wae ) dd de.
5 3

1
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On remarque d’abord que, d’apres (3-4), a?*b;" = e =M=V La relation (3-7) fournit
de plus
Z A3 (ny) < Tt

nx

On en déduit donc que A%(n,) < Tw?/3Ke sauf au plus pour O(ex) entiers n < z. En
reportant dans (3-12), on obtient bien que (3-8) est encore valable pour j = 3 avec la
majoration requise pour le nombre d’éventuelles exceptions.

Cela acheve la preuve de (3-5).

Nous sommes maintenant en mesure d’aborder la phase finale de la démonstration. A ce
stade, le raisonnement est trés voisin de celui de la preuve du théoréme 51 de [7], et nous
nous contentons d’en indiquer les grandes lignes. Soient v := v — i& VU, Vg = v — ég V.
Le principe de base consiste & majorer par récurrence sur w € [v1, v2] la quantité

Ny i={n <z : Vi(ny,) <tT},
avec T = Tj(v) = eEMV=EVY/2 pour établir que
Nv2 < $/£1/450

pour tout t € [1/T, H] avec H := ¢"~¢V?/2 Cela fournit bien le résultat requis : lorsque
t < 1/T, la minoration (3-1) est triviale, et, lorsque H < t < €Y, on a pour tous les
entiers non exceptionnels Vi (n,;t) > Vi(n,; H) > HT > teEMV=EVV  ce qui implique
bien (3-1).
Posons maintenant
Vo)=Y p(dd),
dd'|m
w(dd’ )=k
|log(d’/d)—z|<t

de sorte que Vi (m;t) = V;(m,0). On désigne par L (m) 'ensemble des nombres réels z
tels que Vi (m, z) > tT et par A\g(m) la mesure de Lebesgue de L (m). Le point crucial
de la démonstration consiste & montrer que, pour 1 < & < ﬁ v, € > 0, et chaque w,
V] S w < vz, 00 a

S ee¥
e
sauf peut-étre pour au plus < nx exceptions, avec 7 := e? + '
Admettons momentanément (3-13). Soit N7 le nombre des entiers n < z qui sont

comptés dans IN,, et qui satisfont en outre aux trois conditions

(a) logn,, < Re,

(b)  w—3&Vw < w(ng) <w+ 3EVw,

(€ Ak—2(nw) > ee”/(€/3Vw),
olt 'on a posé R :=log¢. Le nombre d’exceptions a (a) est < z//€ — cf., par exemple,

[14], exercice IT1.5.6 — et le nombre d’exceptions a (b) est <« 2e=€"/50_ 11 résulte donc ce
qui précede que

(314) Nw < qu(; + ane,

(3-13) Ae—2(nw)

1/50

ol ¢; est absolue. Considérons alors le nombre D,, des entiers n comptés dans N, et qui
possedent deux facteurs premiers p et ¢ tels que

(d) 2Re" < logp < 3ReY,

(e) logp < logq < logp + Rev,

(f)  log(a/p) € Li—2(nw).
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La condition (f) garantit que Vji_a(n.,;log(q/p)) > tT, donc que U'inégalité

|log(pd'/qd)| <t

posseéde plus de tT solutions, et partant que Vi (nq4r) > tT avec r := 1 + [log4R]. Cela
implique

(3-15) Dy < Ny — Nutr.
En raisonnant comme dans [7] (pages 110-111), on montre que I’on a pour v; < w < vy

6 *
Nous ne détaillons pas les calculs correspondants qui sont identiques & ceux de [7].
Supposons maintenant que lon ait N,, > 2cinz. Il résulte alors de (3-14) que
Ny > 2N, (v1 < w < o). Par (3:15) et (3:16), on obtient donc que I'on a pour chaque
’LU7U1<U}<’U2—7’7
Nusr < Nu(1 — ce/ /02 R?)

ou ¢ est une constante absolue. Par itération, on obtient
N,, < z(1— cs/ﬂ£1/3R2)fﬁ/8T < pe—cst?/8Rr < zfE,

pour le choix ¢ = £-3/5. Cela montre que N, € nx <K x/§1/450 en toute circonstance et
acheve ainsi la démonstration.

11 reste & établir (3-13). Comme Vi_o(m,z) = 0 pour |z| > t + logm, on peut écrire
pour tout entier m

2top—2(m;0) = / Vii—a(m; z) dz < 2tT(t + logm) + / Vie—a(m, z) dz
—00 £

(317) koa(m)

o0

) 1/2
< 2tT(t + logm) + {)\k,g(m)/ Vie—a(m; 2) dz} .

— 00
Maintenant, on introduit la fonction auxiliaire

sin(u 2 e
Fy(u) = 2(75/2/3“) - 2t/_1/t U (1 — [9t]) do,

et 'on remarque que Fy(u) > 1 pour |u| < t. Cela implique

e
Vim2) < 3 u(dd)PRop(d/d) ~ ) =2t [ e (1 [0t])gna(mi0) 4o,
dd’|m -1/t
w(dd )=k

et donc, en vertu de la formule de Parseval,
1/t

/ Vio(m; 2)?dz < 87rt2/ ok —2(m; )2 dv.

1/t
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En reportant dans (3-17), on obtient donc, sous I'hypothese T'(t +logm) < %Qk_g(m; 0),

1/t )2
(3-18) )\k—Q(m)/ on_a(m; 9)2 do) > M
—1/t 8

Choisissons m = n,, avec v; < w < v. On a vu que 'on peut supposer logn, < Re",
quitte a négliger un ensemble exceptionnel de taille acceptable. On a alors, pour
v1 < w < vy, € assez grand, et avec a = ay = A/(2 — 2)),
1+ 2ay)ve 8VY/2 ’
Ty o)t + logm,) < T2V e 4 (1og 1)
A
< eE()\l)'w—&-w—E\/E/S’

ol A et A; sont définis par k — 2 = Av = Ajw. Cependant, la relation (3-10) appliquée
avec v =w, A = Ay € [1—1/e, 2], fournit

eE()\l)w—&-w—\/w log &
£16 /w

pour tous les entiers n < z sauf au plus O(z/¢'/%%) d’entre eux. Cela montre que I'on a
pour £ assez grand Ty_o(v)(t + logn,,) < %Qk_Q(nw;O), et par conséquent que (3-18) est
valable pour m = n,, sauf peut-étre pour un nombre acceptable d’entiers exceptionnels.

Pour ¢t > 1/Tj_2(v) =2 1/Ti_2(w), et m = ny, la relation (3-5) permet de majorer
I'intégrale de (3-18). La minoration (3-13) en résulte immédiatement.

Qk72(nw; 0) 2

4. Preuve du Théoreme 1

Le résultat découle facilement de (1-11) et du Théoreme 2.

Posons () :=log3 —1—a, s(a) := 2 — G(a). Alors r(a) < s() et la concavité de =
implique que Z(G(a) + h) = a+r(a)h/s(a) des que 0 < h < s(«). En appliquant (1-13)

a r(@)¢, on en déduit que
Ui (n, —a) > e~ 13r@elogaz 1 5 4

pour z assez grand, k := [G(a) logy x + s(a)€+/log, x] et tous les entiers n < z sauf au
plus < z/£'/°0, En reportant dans I'inégalité de gauche de (1-11), on obtient, pour ces
meémes entiers,

G(a
T*(n,—a) S T(n) > T(n>1—G(a)e—f\/10g2m( T(n) ) ( )e{l—s(a)}§\/10g2x7

2k (lOg I)log 2

ce qui implique pleinement la validité de (1-8) dans les conditions du théoreme.

La majoration (1-9) résulte semblablement de 'inégalité de droite de (1-11) en ob-
servant que (1-12), avec ¢£ au lieu de £ (0 < ¢ < 1), est valable simultanément pour
tous les indices k£ < Q(n) avec au plus < z(log, x)2e’c2§2/11 exceptions. Choisissons

¢ :=41/15G(a)/G' (). Un calcul d’accroissements finis tenant compte de la concavité de

E sur [0, 2] fournit donc que U} (n, —a) = 0 dés que k < G(a){log, z — &4/log, x} sauf
pour au plus < z(log, z)2e~G()*€*/12G/(@)* eptiers n < z. Comme Z(k) — r log 2 est une
fonction décroissante de  sur [0, %], on obtient le résultat indiqué en utilisant le fait que

Q)29 < 7(n)e3éVI82 ¥ pour tous les entiers n < z sauf au plus < ze=€ /7.
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5. Preuve du Théoreme 3
Posons L = L(n) := (logn)~® et f(n,d) := |7(n,9/L)|*> — 7(n). On a alors

H(n,a) sup ‘/ (n,¥)dy|.
a€R
0<b<1

De plus, (1-4), (1-5), (1-8) et (1-9) fournissent

e —&(n)y/logy, n < .ﬁ) ( )1 2’( ’lz) dd < eO(w/logznlogS n) PP,
TN

sin(v/2
avec w(¥) = 5 ( q§ 2/ )) (La minoration provient en fait de celle de T*(n, —a —&,,)
™
avec &, = log2/logyn : le Théoréme 5 suffit pour montrer que cette quantité vérifie
(1-8).) Une intégration par parties permet d’écrire, pour chaque entier a > 0,

a+1
] / w(®) f(n,9) dY| < 3w*(a)H(n, a),

avec w*(a) := SUP,cycqarr w(u) < 1/(14 a?). On déduit donc la minoration de 'énoncé
de la convergence de la série ) w*(a).

Pour établir la majoration, on observe que, notant ¢ = a + b/2, on a pour tout n > 1
et tout a € R

. atb B d’\icsin{blog(d'/d)/2L}
(51) / f(”ﬂ”dﬁ—d%ln(d) log(d'/d)/2L

d£d

et par conséquent

2L 2L
5-2 H(n,a) < min (1, ——— ] < _
2 s 2 (- gtz 2 Toad i)

dd’ dd’

L’inégalité annoncée résulte donc du lemme 2 de Hall dans [5].

On peut remarquer cependant que la contribution au terme central de (5-2) des couples
(d,d) tels que |log(d'/d)] < L = (logn)~* peut, grace au Théoréme 2, étre majorée par
7(n)'=G(@+o() Dans la mesure ol 'on peut attendre des compensations génériques pour
la sous-somme de (5-1) correspondant & la condition supplémentaire | log(d'/d)| > L, cela
sous-tend I’hypothese que I'ordre normal de H(n, ) est 7(n)!=G(@)+o(1),
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