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1. Introduction et énoncé des résultats
Introduite par Hall [4] en 1979 et étudiée de manière systématique par Hall &

Tenenbaum ([6], [7]), la fonction

T (n, α) :=
∑

d|n, d′|n
| log(d′/d)|6(logn)α

1 (n > 1, α ∈ R)

est une mesure quadratique de la proximité des diviseurs.
On a trivialement τ(n) 6 T (n, α) 6 T (n, 1) = τ(n)2 pour tout α, où, ici et dans la suite,

τ(n) désigne le nombre de diviseurs d’un entier générique n. Le statut de l’inégalité de
gauche pour presque tout entier n est une question difficile qui a inspiré une conjecture
d’Erdős (cf. [1]) assez connue. Convenons de désigner par pp (presque partout) une
relation valable sur un ensemble d’entiers de densité unité et posons

T ∗(n, α) := T (n, α)− τ(n).

(Cette fonction est mentionnée dans [4], mais sa définition fait l’objet d’une coquille.)
Erdős a conjecturé que T ∗(n, 0) > 0 pp et, en 1964 [2], il a annoncé pouvoir montrer que

(1·1) T ∗(n, α1) = 0 < T ∗(n, α2) pp (α1 < 1− log 3 < α2).

Cependant, sa preuve, non publiée, était incomplète. Il fallut attendre 1979 pour que
Erdős & Hall [3] établissent l’assertion relative à α1, et 1983 pour que Maier & Tenenbaum
[8] prouvent celle qui concerne α2.

Il est établi au chapitre 4 de [7] que la fonction T (n, 0)/τ(n) possède une fonction de
répartition H(z) satisfaisant à

1

z
√

log 2z
� 1−H(z)� log 2z

z
(z > 1).

Il découle de plus des théorèmes 40 et 46 de [7] que l’inégalité T ∗(n, 0) > zτ(n) a lieu,
pour tout z > 0, sur un ensemble d’entiers n de densité positive.

∗ Nous incluons ici certaines corrections par rapport à la version publiée.
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Cependant, un récent résultat de Hall [5] implique que

(1·2) T ∗(n,−α) = o
(
τ(n)

)
pp (α > 0).

L’approche de Hall, qui ne mentionne d’ailleurs pas cette application, est fondée sur
l’étude de la fonction multiplicative

τ(n, ϑ) :=
∑
d|n

diϑ (ϑ ∈ R),

qui n’est autre que la transformée de Fourier–Stieltjes de la fonction croissante

Fn(z) :=
∑

d|n, d6ez

1.

Hall montre que, pour tout α > 0 et tout intervalle I(n) de longueur |I(n)| := (log n)α,
on a

(1·3)

∫
I(n)

|τ(n, ϑ)|2 dϑ ∼ |I(n)|τ(n) pp,

mais sa preuve s’adapte sans changement au cas d’un intervalle de longueur c(log n)α

pour toute constante c > 0 fixée.
Pour établir (1·2) à partir de (1·3), nous introduisons les quantités

∆L(n, z) :=
∑
d|n

| log d−z|6L/2

1, M2(n;L) :=

∫ ∞
−∞

∆L(n, z){∆L(n, z)− 1} dz.

Un calcul facile fournit

M2(n;L) =
∑

d|n, d′|n
0<| log(d′/d)|6L

(
L− | log(d′/d)|

)

de sorte que, pour L = L(n) = (logn)−α et tout α ∈ R,

(1·4) M2(n;L)/L 6 T ∗(n,−α) 6M2(n; 2L)/L.

On a par ailleurs

(1·5) M2(n;L)/L =

∫ ∞
−∞

w(ϑ){|τ(n, ϑ/L)|2 − τ(n)}dϑ,

avec w(ϑ) := (1/2π)
(
(sin 1

2ϑ)/ 1
2ϑ
)2
, et l’on observe que (1·3), sous la forme légèrement

plus générale mentionnée plus haut, équivaut à

(1·6)

∫ b

a

{|τ(n, ϑ/L)|2 − τ(n)} dϑ = o(τ(n)) pp

pour tous a, b fixés. Une simple intégration par parties fournit donc, grâce au théorème
de Lebesgue, ∫ Y

−Y
w(ϑ){|τ(n, ϑ/L)|2 − τ(n)}dϑ = o(τ(n)) pp
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pour chaque Y fixé. D’après un lemme de Montgomery,† on a de plus pour tout a ∈ R∫ a+1

a

|τ(n, ϑ/L)|2 dϑ 6 3

∫ 1/2

−1/2

|τ(n, ϑ/L)|2 dϑ� τ(n) pp,

par (1·6), ce qui implique∫
|ϑ|>Y

w(ϑ){|τ(n, ϑ/L)|2 − τ(n)} dϑ� τ(n)/Y pp.

Il suit finalement
M2(n;L)/L = o

(
τ(n)

)
pp,

d’où résulte (1·2), grâce à (1·4).
Dans ce travail, nous nous proposons de préciser (1·2). Nos résultats font intervenir

une fonction continue croissante Ξ : [0, 1]→ [0, log 3− 1] définie par

Ξ(κ) :=


log 3− 1, si 2

3 < κ 6 1,
κ log 2− κ log κ− (1− κ) log(1− κ)− 1, si 1− 1/e < κ 6 2

3 ,

κ log
( 2

e− 1

)
, si 0 6 κ 6 1− 1/e.

On remarque que Ξ est strictement croissante sur [0, 2
3 ]. Nous pouvons donc définir une

fonction G : [0, log 3− 1]→ [0, 2
3 ] par

G(α) := Ξ−1(α) (0 6 α 6 log 3− 1).

Nous établissons l’évaluation suivante.

Théorème 1. On a pour 0 6 α < log 3− 1

(1·7) T ∗(n,−α) = τ(n)1−G(α)eO
(√

log2 n log3 n
)

pp.

Plus précisément, pour tout ξ, 1 6 ξ 6
√

log2 x, on a

(1·8) T ∗(n,−α) > τ(n)1−G(α)e−ξ
√

log2 x

sauf pour au plus � x/ξ1/50 entiers n 6 x, et

(1·9) T ∗(n,−α) 6 τ(n)1−G(α)eξ
√

log2 x

sauf pour au plus � x(log2 x)2e−G(α)2ξ2/12G′(α)2 entiers n 6 x.

Il est à noter que l’ordre normal de T ∗(n,−α) présente une discontinuité en α = log 3−1
puisque par (1·1) on a T ∗(n, 1− log 3−ε) = 0 pp pour tout ε > 0 alors que (1·7) implique

(1·10) T ∗(n, 1− log 3 + ε) > τ(n)1/3+o(1) pp.

Nous reviendrons plus loin sur l’explication de ce phénomène.

Désignons par {dj(n)}τ(n)
j=1 la suite croissante des diviseurs d’un entier n et posons

D(n, α) :=
∣∣{j : 1 6 j < τ(n), log{dj+1(n)/dj(n)} 6 (log n)−α

}∣∣,
de sorte que, pour α > 0,

T ∗(n,−α)/2∆(n) 6 D(n, α) 6 T ∗(n,−α)

où ∆ est la fonction d’Erdős–Hooley définie par

∆(n) := max
u∈R

∑
d|n, eu<d6eu+1

1.

D’après [9], on sait que, pour toute fonction ξ(n)→∞, on a ∆(n) 6 ξ(n) log2 n pp. Cela
permet donc de déduire du Théorème 1 le corollaire suivant.

† Voir [10], ou [11] p. 131. Voir aussi les notes pp. 143–144 de [11] pour des précisions historiques
concernant les résultats de ce type et notamment l’apport de Wirsing.
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Corollaire 1. Soit 0 6 α < log 3− 1. On a

D(n, α) = τ(n)1−G(α)eO(
√

log2 n log3 n) pp.

De plus, les inégalités (1·8) et (1·9) sont valables en remplaçant T ∗(n,−α) par D(n, α),
avec les mêmes estimations pour les tailles respectives des ensembles exceptionnels.

À ce stade il est utile de remarquer que, si la comparaison des quantités log(d′/d) à
des puissances fixes de log n permet une bonne visualisation des résultats et suffit pour
la plupart des applications, les méthodes du présent travail n’impliquent nullement une
telle restriction — ainsi que l’attestent les énoncés des Théorèmes 4 et 5 aux paragraphes
suivants. Sans chercher la formulation la plus générale, nous indiquons cependant que tous
les énoncés de ce premier paragraphe sont valables sans changement lorsqu’on y remplace
le paramètre α par une fonction αn assujettie aux mêmes intervalles de variation et
satisfaisant une faible contrainte de régularité, par exemple

αn − αm � 1/
√

log2 n (n < m 6 n2).

Ainsi, par exemple, le Corollaire 1 est également valable pour la fonction

D1(n, α) :=
∣∣{j : 1 6 j < τ(n), dj+1(n)/dj(n) 6 1 + (log n)−α

}∣∣.
Une spécificité de la fonction T (n, α) est de compter les rapports d′/d avec multiplicité.

La fonction suivante, également étudiée dans [7],

U(n, α) :=
∑

dd′|n, (d,d′)=1
| log(d′/d)|6(logn)α

1

est le pendant non pondéré de T (n, α). On a en particulier pour α > 0

T (n, α) =
∑
t|n

∑
dd′|n/t, (d,d′)=1
| log(d′/d)|6(logn)α

1 >
∑
t|n

U(n/t, α)

alors que l’inégalité est inversée lorsque α 6 0.
Désignons par Ω(n) le nombre des facteurs premiers, comptés avec multiplicité, d’un

entier n. Nous posons pour k > 1

U∗k (n, α) :=
∑

dd′|n, (d,d′)=1
0<| log(d′/d)|6(logn)α

Ω(dd′)6k

1.

Notre évaluation de T ∗(n,−α) passe par une estimation de l’ordre normal de U∗k (n,−α).
On a en fait,

T ∗(n, α) =
∑

dd′|n, (d,d′)=1
0<| log(d′/d)|6(logn)α

τ(n/dd′)

d’où l’on déduit que, pour tout α ∈ R et tout entier n > 1,

(1·11) τ(n) max
16k6Ω(n)

U∗k (n, α)/2k 6 T ∗(n, α) 6 2Ω(n)
∑

16k6Ω(n)

U∗k (n, α)/2k.
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Nous montrons le résultat suivant dans lequel nous notons

R(x, ξ) := (log2 x)e−ξ
2/11.

Théorème 2. Soient x > 16, ξ = ξ(x) ∈ [1,
√

log2 x], k = k(x) ∈ N ∩ [1, log2 x], et
κ := k/ log2 x.

(i) Pour chaque α 6 1 on a

(1·12) U∗k (n, α) 6 (log x)Ξ(κ)+αeξ
√

log2 x,

pour tous les entiers n 6 x sauf au plus � xR(x, ξ).
(ii) Pour chaque α 6 min{1, κ/(1− 1/e)}, on a

(1·13) U∗k (n, α) > (log x)Ξ(κ)+αe−ξ
√

log2 x − 1,

pour tous les entiers n 6 x sauf au plus � x/ξ1/50.

Le résultat suivant, concernant la fonction

Eκ(n) := min
dd′|n

(d,d′)=1, d<d′

Ω(dd′)6κΩ(n)

d′/d

et généralisant le théorème 54 de [7], est une conséquence immédiate du Théorème 2.

Corollaire 2. On a pour κ ∈ [0, 1]

Eκ(n) = 1 + (log n)−Ξ(κ)eO
(√

log2 n log3 n
)

pp.

Plus précisément, si ξ = ξ(x)→∞ avec ξ(x) 6
√

log2 x, on a

Eκ(n) 6 1 + (log x)−Ξ(κ)eξ(x)
√

log2 x

pour tous les entiers n 6 x sauf au plus � xR(x, ξ), et

Eκ(n) > 1 + (log x)−Ξ(κ)e−ξ(x)
√

log2 x

pour tous les entiers n 6 x sauf au plus � x/ξ1/50.

La majoration (1·12) précise celle de Hall au lemme 1 de [5]. La minoration (1·13)
répond à la question soulevée dans [5] de l’optimalité de l’exposant Ξ(κ). Hall mentionne
à ce propos, sans l’expliciter, l’existence d’un argument heuristique en faveur de cette
optimalité. Soit s ∈ [k,Ω(n)] et m le produit des s plus petits facteurs premiers de n.
On pose k = su avec κ 6 u 6 1. On sait que la taille normale de logm est es (voir, par
exemple, le théorème 07 de [7] ou l’exercice III.5.6 de [13]) et, d’après le théorème de
Hardy–Ramanujan, que Ω(n) est normalement proche de log2 n. Or le nombre des couples
(d, d′) de diviseurs de m tels que Ω(dd′) 6 k est au moins égal à

(
s
k

)
2k � e%(u)s/

√
s, avec

%(u) := u log(2/u) − (1 − u) log(1 − u). En supposant l’équirépartition des quantités
log(d′/d) pour ces couples de diviseurs, on obtient la minoration heuristique

U∗k (n, α) > (log n)αe%(u)s−s/
√
s = (log n)α+κ{%(u)−1}/u+o(1).
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Il reste à observer que le maximum de {%(u) − 1}/u sous la contrainte κ 6 u 6 1 est
obtenu en u = max(κ, 1− 1/e). Cela fournit bien

(1·14) U∗k (n, α) > (log n)Ξ(κ)+α+o(1).

Nous notons également que, pour κ 6 2
3 et Ξ(κ)+α > 0, le raisonnement précédent peut

aisément être modifié pour montrer que (1·14) est heuristiquement une égalité.
La minoration (1·13) du Théorème 2 pour α = 1 − log 3 + ε et κ = 2

3 fournit
immédiatement l’explication de la discontinuité de G(α) en 1 − log 3 et l’inégalité
(1·10). En effet, pour un entier normal, i.e. tel que ω(n) ∼ log2 n, la fonction
d’Erdős E(n) := E1(n) est un minimum réalisé pp pour des diviseurs d, d′ tels que
ω(dd′) ∼ 2

3 log2 n — ce qui est heuristiquement justifié par le fait que cette condition
correspond au maximum de la répartition du nombre des couples (d, d′) de diviseurs de n
premiers entre eux. Comme tous les couples (md,md′) avec m|n/dd′ sont comptés dans
T ∗(n, 1− log 3 + ε), on obtient

T ∗(n, 1− log 3 + ε) > 2{1/3+o(1)} log2 n = τ(n)1/3+o(1) pp.

Le lien mentionné plus haut entre la fonction T ∗(n,−α) et la valeur moyenne de
|τ(n, ϑ)|2 sur des intervalles de longueur (log n)α laisse augurer que les Théorèmes 1
et 2 permettent d’apporter des précisions supplémentaires sur le terme d’erreur implicite
dans (1·3). Nous obtenons le résultat suivant relatif à la fonction

H(n, α) :=
1

(log n)α
sup
a∈R

0<b6(logn)α

∣∣∣ ∫ a+b

a

{|τ(n, ϑ)|2 − τ(n)} dϑ
∣∣∣.

Théorème 3. Soient ξ = ξ(n)→∞ et 0 6 α < log 3− 1. On a

τ(n)1−G(α)e−ξ
√

log2 n 6 H(n, α) 6 τ(n)1−α/ log 2+o(1) pp.

Il est raisonnable de conjecturer que, quitte à y remplacer −ξ par +ξ, la borne inférieure
fournit aussi un majorant de l’ordre normal de H(n, α), mais une telle estimation semble
hors de portée des méthodes développées dans le présent travail.

2. Preuve du Théorème 2 — majorations
En vue d’applications ultérieures, nous établissons un résultat plus général qu’il n’est

nécessaire pour prouver le Théorème 2(i). Nous posons

∇(n; t, y) :=
∑

dd′|n, (d,d′)=1
0<| log(d′/d)|6t

yΩ(dd′),

notons rv := exp exp v, et introduisons la fonction multiplicative de n

nv :=
∏

pν‖n, p6rv

pν .

D’après [14], exercice III.5.6, on sait que

(2·1) log nv 6 Rev

sauf pour au plus O
(
xe−R/2

)
entiers n 6 x.



Sur l’écart quadratique moyen des diviseurs d’un entier normal 7

Nous aurons à plusieurs reprises l’occasion d’utiliser le lemme 50.1 de [7], relatif à la
fonction

Ω(n,w) :=
∑

pν‖n, p6w

ν,

et qui stipule que, pour chaque ε > 0, on a supw>3{Ω(n,w) − (1 + ε) log2 w} 6 T sauf

pour au plus � x (1 + ε)−T ε−2 entiers n 6 x. Associée à (2·1), cette estimation implique
facilement que, pour tout ξ ∈ [0,

√
v], l’inégalité

(2·2) sup
d|nv
{Ω(n, d)− log2 d} 6 2

3ξ
√
v

est valable pour tous les entiers n 6 x sauf au plus O
(
xve−ξ

2/11
)
. Nous omettons les

détails de la vérification.

Théorème 4. On a uniformément pour x > 3, 1 6 v 6 log2 x, t > 0, 0 6 ξ 6
√
v,

1
2 (e− 1) 6 y 6 1,

(2·3) ∇(nv; t, y) 6 t
(1 + 2y

e

)v
eξ
√
v

sauf peut-être pour au plus O
(
xve−ξ

2/11
)

entiers n 6 x.

Démonstration. Nous employons la méthode utilisée pour établir le théorème 50 de [7].
Comme les détails techniques sont très voisins, nous nous contentons ici d’indications
relativement succinctes.

Nous observons d’abord que l’on peut supposer v > v0 et ξ > ξ0, où v0 et ξ0 sont des
constantes arbitrairement grandes, puisque le résultat est trivialement vérifié dans le cas
contraire.

Ensuite, nous posons t0 := 1
2 (e/3)ve−ξ

√
v, t1 := 1

10ev et nous remarquons qu’il suffit
d’établir le résultat lorsque t0 6 t 6 t1. En effet, lorsque t 6 t0, l’inégalité (2·3) appliquée
avec y = 1 montre que la somme du membre de gauche est vide. D’autre part, lorsque
t > t1, la relation (2·2) implique que Ω(nv) 6 v + 2

3ξ
√
v avec un nombre acceptable

d’exceptions, d’où

∇(nv; t, y) 6 (1 + 2y)Ω(nv) 6 10t
(1 + 2y

e

)v
3(2/3)ξ

√
v,

ce qui fournit la majoration requise pour un choix convenable de ξ0.
Nous supposons donc dorénavant t0 6 t 6 t1. Nous posons

∇1(n) :=
∑
d|n

1<d6et

1, ∇2(n) :=
∑
dd′|n

1<d<d′6det

yΩ(dd′),

de sorte que l’on a, pour tout n,

∇(nv; t, y) 6 2∇1(nv) + 2∇2(nv).

Il est clair que ∇1(nv) = 0 si t < log 2. Dans le cas contraire, on observe que, par (2·2),

(2·4) ∇1(nv) 6 2Ω(n,exp t) 6 tlog 22(2/3)ξ
√
v 6 1

4 t
(1 + 2y

e

)v
eξ
√
v

dès que ξ0 est assez grand.
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Tout couple (d, d′) compté dans ∇2(nv) est tel que

e−t/d < 1/d′ < log(d′/(d′ − 1)) 6 log(d′/d) 6 t,

donc d > d0(t) := max(1, e−t/t). On pose

I1 :=]d0(t),max(1, 1/t2)], I2 :=] max(1, 1/t2), x1/4], I3 :=]x1/4,
√
x ],

et l’on désigne par ∇2j(nv) la contribution à ∇2(nv) des couples (d, d′) tels que d ∈ Ij .
On a d’abord, en majorant y par 1 dans ∇21(nv)∑

n6x

∇21(nv) 6
∑

d61/t2

∑
d<d′6det

x

dd′

� tx log(1 + 1/t) 6 txv
(1 + 2y

e

)v
,

où l’on a utilisé le fait que la somme extérieure est vide si t > 1. Cela implique clairement
que l’inégalité

(2·5) ∇21(nv) 6 1
12 t
(1 + 2y

e

)v
eξ
√
v

a lieu avec l’estimation requise pour le nombre d’éventuelles exceptions.
Grâce à (2·2), on peut écrire pour j = 2 ou 3 et tout z ∈]0, 1]

(2·6) ∇2j(nv) 6 z−(2/3)ξ
√
v∇∗2j(nv)

avec

∇∗2j(nv) :=
∑
d|nv
d∈Ij

∑
d′|nv/d
d<d′6det

zΩ(n,d′)(log d′)− log zyΩ(dd′).

Nous choisirons plus loin la valeur du paramètre z.
Considérons d’abord le cas j = 2. On peut écrire

S∗22 : =
∑
n6x

∇∗22(nv)

6
∑
d∈I2

P+(d)6rv

∑
d<d′6det

(yz)Ω(dd′)(log d′)− log z
∑

n6x/dd′

zΩ(n,d′).

Pour tout couple (d, d′) de la sommation, on a dd′ 6 etd2 6 x1/10x1/2 = x3/5. La somme
intérieure est donc

� x

dd′
(log d′)z−1.

Il suit

(2·7) S∗22 � x
∑
d∈I2

P+(d)6rv

(yz)Ω(d)

d

∑
d<d′6det

(yz)Ω(d′) (log d′)z−1−log z

d′
.
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Lorsque t > 1, on peut majorer la somme intérieure par sommation d’Abel en utilisant
le lemme 50.2 de [7]. On obtient, sous réserve que

A = A(y, z) := z(y + 1)− 2− log z < 0,

l’estimation � t(log d)A. Lorsque t < 1, on vérifie grâce au théorème de Shiu [12] que la
même estimation est valable puisque d > 1/t2 pour tout d ∈ I2. En reportant dans (2·7),
il suit

S∗22 � xt
∑

P+(d)6rv

(yz)Ω(d)(log d)A

d
.

Nous choisissons z = 1/(2y + 1), de sorte que A = (y + 1)/(2y + 1) + log(2y + 1) − 2.
Cette expression est une fonction croissante de y, donc A 6 log 3 − 4

3 < 0. Une simple
sommation d’Abel fournit alors

S∗22 � xtve(A+yz)v = xtv
(2y + 1

e

)v
.

Compte tenu de (2·6), cela implique

∇22(nv) 6 1
12 t
(2y + 1

e

)v
eξ
√
v

sauf pour au plus O(xve−cξ
√
v) avec c = 1− 2

3 log 3 > 1
11 .

On procède de manière semblable pour majorer S∗23 :=
∑
n6x∇∗23(nv). Nous obtenons

d’abord

(2·8) S∗23 �
x

(log x)log z

∑
d∈I3

P+(d)6rv

(yz)Ω(d)

d

∑
d<d′6min(etd,x/d)

(yz)Ω(d′)

d′

(
log

2x

dd′

)z−1

.

En raisonnant comme dans [7], pp 103–104, on montre que la somme intérieure est

� t

z
(log d)yz−1

(
log

2x

d2

)z−1

.

En reportant dans (2·8) et en utilisant le lemme 50.2 de [7] pour effectuer l’intégration
par parties en tenant compte de la condition P+(d) 6 rv, on parvient finalement à

S∗23 � txv
(2y + 1

e

)v
,

pour le choix z = 1/(2y + 1). On conclut comme précédemment que

∇23(nv) 6 1
12 t
(2y + 1

e

)v
eξ
√
v

avec au plus O(xe−ξ
2/11) exceptions.

En regroupant nos estimations, nous obtenons bien que (2·3) est valable avec la
majoration annoncée pour le nombre d’exceptions.

Nous sommes maintenant en mesure d’établir l’estimation (1·12) du Théorème 2. Nous
pouvons supposer κ 6 2

3 puisque le résultat découle du théorème 53 de [7] dans le cas
contraire. On a pour tous y ∈]0, 1], x > 3, 1 < n 6 x et k ∈ [1, 2

3 log2 x]

U∗k (n, α) 6 y−k∇(n; t, y)

avec t := (log n)α. En comparant t à (log x)α et en faisant appel au Théorème 4 pour
v = log2 x, on obtient immédiatement que, lorsque 1

2 (e− 1) 6 y 6 1,

U∗k (n, α) 6 (log x)α−κ log y+log(2y+1)−1eξ(x)
√

log2 x

sauf peut-être pour � xR(x, ξ) entiers n 6 x. Cela implique le résultat annoncé en
choisissant y = 1

2 max{κ/(1− κ), e− 1}.
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3. Preuve du Théorème 2 — minorations

Nous conservons les notations introduites au paragraphe précédent. Nous posons
également

∇k(m; t) :=
∑
dd′|m

ω(dd′)=k
| log(d′/d)|6t

µ(dd′)2.

Nous établissons le résultat suivant, dont (1·13) est une conséquence immédiate.

Théorème 5. On a uniformément pour x > 3, 1 6 v 6 log2 x, 0 6 t 6 ev,
1 6 ξ 6 1

100

√
v, 1− 1/e 6 λ 6 2

3 , k = λv,

(3·1) ∇k(nv; t) > teΞ(λ)v−ξ
√
v − 1

sauf peut-être pour au plus � x/ξ1/450 entiers n 6 x.(1)

Remarque. Nous n’avons pas cherché à optimiser la dépendance en ξ de la majoration de
l’ensemble exceptionnel.

Avant de passer à la démonstration, nous notons que la minoration du Théorème 2
pour U∗k (n, α) résulte de l’énoncé précédent en choisissant, lorsque k 6 2

3 log2 x,
v := min{1, κ/(1− 1/e)} log2 x, ce qui correspond à λ = max(κ, 1− 1/e).

Démonstration du Théorème 5. Bien que sensiblement plus technique, la démonstration
est d’une structure essentiellement identique à celle du théorème 51 de [7]. Aussi nous
renvoyons librement à [7] pour certains détails calculatoires.

Nous pouvons manifestement supposer ξ, et donc v, assez grand.
Posons

%k(m;ϑ) :=
∑
dd′|m

ω(dd′)=k

µ(dd′)2(d′/d)iϑ,

et, pour y ∈ C,

(3·2)

%(m;ϑ, y) : =

ω(m)∑
j=0

yj%j(m;ϑ)

=
∑
dd′|m

µ(dd′)2(d′/d)iϑyω(dd′) =
∏
p|m

{1 + 2y cos(ϑ log p)}.

On note que %k(m;ϑ) ∈ R pour tous m > 1, ϑ ∈ R. Nous introduisons, pour chaque
valeur du paramètre a > 0, les quantités

b1 := 1 + 2a2, b2 := (1 + 2a)2/b1.

En fait, nous n’emploierons que des valeurs de a satisfaisant à 1
2 (e− 1) 6 a 6 1, de sorte

que, notant σ0 := 2e2/(e2 − 2e + 3), on aura toujours

(3·3) σ0 6 b2 6 3.

1. Suite à une imprécision, l’exposant 1/50 apparâıt à la place de 1/450 dans la version publiée
de ce travail.
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Posons T = Tk(v) := eΞ(λ)v−ξ
√
v/2 et notons immédiatement, à fins de référence

ultérieure, que

(3·4) eΞ(λ)v+v = (1 + 2aλ)va−kλ

pour k = λv et aλ := λ/(2− 2λ). Posons encore Q(w) := w logw − w + 1 (w > 0) et

β := Q(1/ log σ0) ≈ 0, 003746.

La première étape de la démonstration consiste à établir que pour chaque v, tel que
1 6 v 6 log2 x, k = λv, 1− 1/e 6 λ 6 3

4 et chaque ε > 0 on a

(3·5)

∫ T

−T
%k(nv;ϑ)2 dϑ 6

√
v ξ1/3

εev
%k(nv; 0)2

pour tous les entiers n 6 x sauf au plus � x{εβ + ξ−1/50}.
À cette fin, nous utiliserons systématiquement l’inégalité

(3·6) %k(m;ϑ)2 6 a−2k

∫ 1
2

− 1
2

|%(m;ϑ, ae2πiϕ)|2 dϕ (a > 0),

qui découle trivialement de (3·2) et de la formule de Parseval.
On établit d’abord que, posant ωϑ(n) :=

∑
p|n, p6exp(1/|ϑ|) 1, on a pour chaque a ∈]0, 1[

(3·7)
∑
n6x

|%(nv;ϑ, ae2πiϕ)|2

b
ω(nv)
1 b

ωϑ(nv)
2

� x
( |ϑ|+ e−v

1 + |ϑ|

)bϕ2

{(log(3 + |ϑ|)}4

uniformément pour ϑ ∈ R r {0}, |ϕ| 6 1
2 , v 6 log2 x, avec b = b(a) := 32a/(1 + 2a)2.

La preuve de (3·7) est identique, mutatis mutandis, à celle du lemme 51.3 de [7] et nous
omettons les détails.

Ensuite, on scinde le domaine d’intégration de (3·5) sous la forme D1∪D2∪D3, où les do-
maines Dj correspondent respectivement aux conditions |ϑ| 6 e−v/6ε, e−v/6ε < |ϑ| 6 1
et 1 < |ϑ| 6 T . Désignons par Aj(nv) la contribution de Dj au membre de gauche
de (3·5). Nous allons montrer que l’on a, pour tous les entiers non exceptionnels,

(3·8) Aj(nv) 6

√
v ξ1/3

3εev
%k(nv; 0)2,

et nous observons que le cas j = 1 est trivialement vérifié puisque l’intégrande de (3·5)
n’excède pas %k(nv; 0)2.

Pour traiter le cas j = 2, nous appliquons (3·6) avec a = aλ = λ/(2− 2λ), de sorte que
k = 2av/(1 + 2a), et nous notons d’abord que l’inégalité

(3·9) v − 1
5

√
v log ξ 6 ω(nv) 6 v + 1

4

√
v log ξ

a lieu pour tous les entiers n 6 x sauf peut-être pour au plus O(xξ−1/50).† On a

%k(nv; 0)akλ
√
v

(1 + 2aλ)ω(nv)
=

(
ω(nv)

k

)
(2aλ)k

√
v

(1 + 2aλ)ω(nv)
.

La formule de Stirling et un simple calcul d’accroissements finis fournissent alors pour
1 6 ξ 6

√
v et tout entier n satisfaisant (3·9)

(3·10)
%k(nv; 0)akλ

√
v

(1 + 2aλ)ω(nv)
� ξ−

1
16 .

† L’énoncé du théorème III.3.7 de [13] fournit immédiatement O(x/ξ1/75), mais on obtient
la majoration indiquée en insérant dans la démonstration que l’on a Q(1 − w) > w2/2 et
Q(1 + w/4) > w2/50 pour 0 < w 6 1.
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Ensuite, nous appliquons le lemme 51.2 de [7] qui permet, posant δ := 1 + 1
2

√
ε,

α := δ/ log σ0, de majorer par O(xεβ) le nombre des entiers n pour lesquels l’inégalité

ω(nv)− ωϑ(nv) > α log(|ϑ|ev)− 1

est en défaut pour au moins une valeur de ϑ ∈ D2. Pour les entiers non exceptionnels,
on a

(2aλ + 1)−2ω(nv) 6 b
−ω(nv)
1 b

1−ωϑ(nv)
2 (|ϑ|ev)−δ,

où l’on a utilisé le fait que b2 > σ0. Puisque l’on a aussi b2 6 3, on déduit de cette
inégalité que

A2(nv) 6 3(1 + 2aλ)2ω(nv)

∫
D2

%k(nv;ϑ)2

b
ω(nv)
1 b

ωϑ(nv)
2

dϑ

(|ϑ|ev)δ
.

En insérant (3·6) et (3·10), il suit

A2(nv) 6 3(1 + 2aλ)2ω(nv)a−2k
λ A∗2(nv) 6 Kv%k(nv; 0)2ξ

1
8A∗2(nv),

où K est une constante absolue et où l’on a posé

A∗2(nv) :=

∫ 1
2

− 1
2

∫
D2

|%k(nv;ϑ, ae2πiϕ)|2

b
ω(nv)
1 b

ωϑ(nv)
2

dϑ

(|ϑ|ev)δ
dϕ.

Par (3·7), on a

∑
n6x

A∗2(nv)� x

∫ 1
2

− 1
2

∫ 1

e−v/6ε

ϑbϕ
2 dϑ

(|ϑ|ev)δ
dϕ

� xe−v
∫ ev

1/6ε

du

uδ
√
v − log u+ 1

� x
e−v√
vε3/4

.

Il en résulte que A∗2(nv) 6 e−v/(3Kε
√
v) sauf pour au plus O

(
xε1/4

)
exceptions et donc

que (3·8) est valable pour j = 2 avec la majoration requise pour le nombre d’entiers
exceptionnels.

On a ωϑ(nv) = 0 pour ϑ ∈ D3. Appliquons alors (3·6) avec maintenant a :=
√
aλ. La

relation (3·10) fournit dans ce cas

(3·11) a−2kb
ω(nv)
1 � %k(nv; 0)

√
v ξ

1
16 .

Nous obtenons donc, en tenant compte de (3·6) et (3·9),

(3·12)

A3(nv) 6
b
ω(nv)
1

a2k
A∗3(nv)

6 Kvξ
1
8 %(nv; 0)2 a2k

b
v− 1

5

√
v log ξ

1

A∗3(nv)

pour une constante absolue convenable K, avec

A∗3(nv) :=

∫ 1
2

− 1
2

∫
D3

|%(nv;ϑ, ae2πiϕ)|2

b
ω(nv)
1

dϑ dϕ.
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On remarque d’abord que, d’après (3·4), a2kb−v1 = e−Ξ(λ)v−v. La relation (3·7) fournit
de plus ∑

n6x

A∗3(nv)� xTv4.

On en déduit donc que A∗3(nv) 6 Tv4/3Kε sauf au plus pour O(εx) entiers n 6 x. En
reportant dans (3·12), on obtient bien que (3·8) est encore valable pour j = 3 avec la
majoration requise pour le nombre d’éventuelles exceptions.

Cela achève la preuve de (3·5).
Nous sommes maintenant en mesure d’aborder la phase finale de la démonstration. À ce

stade, le raisonnement est très voisin de celui de la preuve du théorème 51 de [7], et nous
nous contentons d’en indiquer les grandes lignes. Soient v1 := v− 1

4ξ
√
v, v2 := v− 1

8ξ
√
v.

Le principe de base consiste à majorer par récurrence sur w ∈ [v1, v2] la quantité

Nw := |{n 6 x : ∇k(nw) 6 tT}|,

avec T = Tk(v) = eΞ(λ)v−ξ
√
v/2, pour établir que

Nv2 � x/ξ1/450

pour tout t ∈ [1/T,H] avec H := ev−ξ
√
v/2. Cela fournit bien le résultat requis : lorsque

t < 1/T , la minoration (3·1) est triviale, et, lorsque H < t 6 ev, on a pour tous les
entiers non exceptionnels ∇k(nv; t) > ∇k(nv;H) > HT > teΞ(λ)v−ξ

√
v, ce qui implique

bien (3·1).
Posons maintenant

Vk(m, z) :=
∑
dd′|m

ω(dd′)=k
| log(d′/d)−z|6t

µ(dd′)2,

de sorte que ∇k(m; t) = Vk(m, 0). On désigne par Lk(m) l’ensemble des nombres réels z
tels que Vk(m, z) > tT et par λk(m) la mesure de Lebesgue de Lk(m). Le point crucial
de la démonstration consiste à montrer que, pour 1 6 ξ 6 1

100

√
v, ε > 0, et chaque w,

v1 6 w 6 v2, on a

(3·13) λk−2(nw) >
εew

ξ1/3
√
w

sauf peut-être pour au plus � ηx exceptions, avec η := εβ + ξ−1/50.
Admettons momentanément (3·13). Soit N∗w le nombre des entiers n 6 x qui sont

comptés dans Nw et qui satisfont en outre aux trois conditions

(a) log nw 6 Rew,
(b) w − 1

2ξ
√
w 6 ω(nw) 6 w + 1

2ξ
√
w,

(c) λk−2(nw) > εew/(ξ1/3
√
w),

où l’on a posé R := log ξ. Le nombre d’exceptions à (a) est � x/
√
ξ — cf., par exemple,

[14], exercice III.5.6 — et le nombre d’exceptions à (b) est � xe−ξ
2/50. Il résulte donc ce

qui précède que

(3·14) Nw 6 N∗w + c1ηx,

où c1 est absolue. Considérons alors le nombre Dw des entiers n comptés dans N∗w et qui
possèdent deux facteurs premiers p et q tels que

(d) 2Rew < log p 6 3Rew,
(e) log p < log q 6 log p+Rew,
(f) log(q/p) ∈ Lk−2(nw).
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La condition (f) garantit que Vk−2(nw; log(q/p)) > tT , donc que l’inégalité

| log(pd′/qd)| 6 t

possède plus de tT solutions, et partant que ∇k(nw+r) > tT avec r := 1 + [log 4R]. Cela
implique

(3·15) Dw 6 Nw −Nw+r.

En raisonnant comme dans [7] (pages 110–111), on montre que l’on a pour v1 6 w 6 v2

(3·16) Dw > c2
ε

R2ξ1/3
√
w
N∗w.

Nous ne détaillons pas les calculs correspondants qui sont identiques à ceux de [7].
Supposons maintenant que l’on ait Nv2 > 2c1ηx. Il résulte alors de (3·14) que

N∗w > 1
2Nw (v1 6 w 6 v2). Par (3·15) et (3·16), on obtient donc que l’on a pour chaque

w, v1 6 w 6 v2 − r,
Nw+r 6 Nw(1− cε/

√
vξ1/3R2)

où c est une constante absolue. Par itération, on obtient

Nv2 � x(1− cε/
√
vξ1/3R2)ξ

√
v/8r � xe−cεξ

2/3/8R2r � x/ξ,

pour le choix ε = ξ−3/5. Cela montre que Nv2 � ηx� x/ξ1/450 en toute circonstance et
achève ainsi la démonstration.

Il reste à établir (3·13). Comme Vk−2(m, z) = 0 pour |z| > t + logm, on peut écrire
pour tout entier m

(3·17)

2t%k−2(m; 0) =

∫ ∞
−∞

Vk−2(m; z) dz 6 2tT (t+ logm) +

∫
Lk−2(m)

Vk−2(m, z) dz

6 2tT (t+ logm) +
{
λk−2(m)

∫ ∞
−∞

Vk−2(m; z)2 dz
}1/2

.

Maintenant, on introduit la fonction auxiliaire

Ft(u) := 2
( sin(u/2t)

u/2t

)2

= 2t

∫ 1/t

−1/t

eiϑu(1− |ϑt|) dϑ,

et l’on remarque que Ft(u) > 1 pour |u| 6 t. Cela implique

V (m, z) 6
∑
dd′|m

ω(dd′)=k

µ(dd′)2Ft(log(d′/d)− z) = 2t

∫ 1/t

−1/t

e−iϑz(1− |ϑt|)%k−2(m;ϑ) dϑ,

et donc, en vertu de la formule de Parseval,∫ ∞
−∞

Vk−2(m; z)2 dz 6 8πt2
∫ 1/t

−1/t

%k−2(m;ϑ)2 dϑ.
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En reportant dans (3·17), on obtient donc, sous l’hypothèse T (t+ logm) 6 1
2%k−2(m; 0),

(3·18) λk−2(m)

∫ 1/t

−1/t

%k−2(m;ϑ)2 dϑ >
%k−2(m; 0)2

8π
.

Choisissons m = nw avec v1 6 w 6 v. On a vu que l’on peut supposer log nw 6 Rew,
quitte à négliger un ensemble exceptionnel de taille acceptable. On a alors, pour
v1 6 w 6 v2, ξ assez grand, et avec a = aλ = λ/(2− 2λ),

Tk−2(v)(t+ log nw) 6
(1 + 2aλ)ve−ξ

√
v/2

akλ
{ev−ξ

√
v/2 + (log ξ)ew}

6 eΞ(λ1)w+w−ξ
√
w/3,

où λ et λ1 sont définis par k − 2 = λv = λ1w. Cependant, la relation (3·10) appliquée
avec v = w, λ = λ1 ∈

[
1− 1/e, 3

4

]
, fournit

%k−2(nw; 0) >
eΞ(λ1)w+w−

√
w log ξ

ξ
1
16
√
w

pour tous les entiers n 6 x sauf au plus O(x/ξ1/50) d’entre eux. Cela montre que l’on a
pour ξ assez grand Tk−2(v)(t+ log nw) 6 1

2%k−2(nw; 0), et par conséquent que (3·18) est
valable pour m = nw sauf peut-être pour un nombre acceptable d’entiers exceptionnels.

Pour t > 1/Tk−2(v) > 1/Tk−2(w), et m = nw, la relation (3·5) permet de majorer
l’intégrale de (3·18). La minoration (3·13) en résulte immédiatement.

4. Preuve du Théorème 1
Le résultat découle facilement de (1·11) et du Théorème 2.
Posons r(α) := log 3− 1−α, s(α) := 2

3 −G(α). Alors r(α) < s(α) et la concavité de Ξ
implique que Ξ(G(α) + h) > α+ r(α)h/s(α) dès que 0 6 h 6 s(α). En appliquant (1·13)
à 1

2r(α)ξ, on en déduit que

U∗k (n,−α) > e−1+ 1
2 r(α)ξ

√
log2 x − 1 > 1

pour x assez grand, k :=
[
G(α) log2 x+ s(α)ξ

√
log2 x

]
et tous les entiers n 6 x sauf au

plus � x/ξ1/50. En reportant dans l’inégalité de gauche de (1·11), on obtient, pour ces
mêmes entiers,

T ∗(n,−α) >
τ(n)

2k
> τ(n)1−G(α)e−ξ

√
log2 x

( τ(n)

(log x)log 2

)G(α)

e{1−s(α)}ξ
√

log2 x,

ce qui implique pleinement la validité de (1·8) dans les conditions du théorème.
La majoration (1·9) résulte semblablement de l’inégalité de droite de (1·11) en ob-

servant que (1·12), avec cξ au lieu de ξ (0 6 c 6 1), est valable simultanément pour

tous les indices k 6 Ω(n) avec au plus � x(log2 x)2e−c
2ξ2/11 exceptions. Choisissons

c :=
√

11
12G(α)/G′(α). Un calcul d’accroissements finis tenant compte de la concavité de

Ξ sur [0, 2
3 ] fournit donc que U∗k (n,−α) = 0 dès que k 6 G(α)

{
log2 x− ξ

√
log2 x

}
sauf

pour au plus � x(log2 x)2e−G(α)2ξ2/12G′(α)2 entiers n 6 x. Comme Ξ(κ)−κ log 2 est une
fonction décroissante de κ sur [0, 2

3 ], on obtient le résultat indiqué en utilisant le fait que

Ω(n)2Ω(n) 6 τ(n)e
1
3 ξ
√

log2 x pour tous les entiers n 6 x sauf au plus � x e−ξ
2/7.
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5. Preuve du Théorème 3
Posons L = L(n) := (log n)−α et f(n, ϑ) := |τ(n, ϑ/L)|2 − τ(n). On a alors

H(n, α) = sup
a∈R

0<b61

∣∣∣ ∫ a+b

a

f(n, ϑ) dϑ
∣∣∣.

De plus, (1·4), (1·5), (1·8) et (1·9) fournissent

e−ξ(n)
√

log2 n 6

∫∞
0
w(ϑ)f(n, ϑ) dϑ

τ(n)1−G(α)
6 eO(

√
log2 n log3 n) pp,

avec w(ϑ) =
1

2π

( sin(ϑ/2)

ϑ/2

)2

. (La minoration provient en fait de celle de T ∗(n,−α− εn)

avec εn := log 2/ log2 n : le Théorème 5 suffit pour montrer que cette quantité vérifie
(1·8).) Une intégration par parties permet d’écrire, pour chaque entier a > 0,

∣∣∣ ∫ a+1

a

w(ϑ)f(n, ϑ) dϑ
∣∣∣ 6 3w∗(a)H(n, α),

avec w∗(a) := supa6u6a+1 w(u)� 1/(1 + a2). On déduit donc la minoration de l’énoncé
de la convergence de la série

∑
a∈N w

∗(a).
Pour établir la majoration, on observe que, notant c = a + b/2, on a pour tout n > 1

et tout a ∈ R

(5·1)

∫ a+b

a

f(n, ϑ) dϑ =
∑

d|n,d′|n
d6=d′

(d′
d

)ic sin{b log(d′/d)/2L}
log(d′/d)/2L

,

et par conséquent

(5·2) H(n, α) 6
∑

d|n,d′|n
d 6=d′

min
(

1,
2L

| log(d′/d)|

)
6

∑
d|n,d′|n
d6=d′

2L

| log(d′/d)|
.

L’inégalité annoncée résulte donc du lemme 2 de Hall dans [5].
On peut remarquer cependant que la contribution au terme central de (5·2) des couples

(d, d′) tels que | log(d′/d)| 6 L = (log n)−α peut, grâce au Théorème 2, être majorée par
τ(n)1−G(α)+o(1). Dans la mesure où l’on peut attendre des compensations génériques pour
la sous-somme de (5·1) correspondant à la condition supplémentaire | log(d′/d)| > L, cela
sous-tend l’hypothèse que l’ordre normal de H(n, α) est τ(n)1−G(α)+o(1).
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