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1. Introduction

The concept of concentration function was introduced in 1937 by Paul Levy as
a tool for the study of sums of random variables. It is defined, for any random variable
X with distribution function F, as

Q(l) = sup (F(x+1)-F{x)), / > 0 .
xett

Since then, concentration functions have been used by probabilists mainly to
investigate convergence problems, but they have also been applied to several other
questions. A full account of the subject may be found in [9].

In number theory, the study of concentration functions has been initiated by Erdos
who considered the case of additive arithmetical functions [1]. More recent work
in this direction is due to Halasz [5] and Ruzsa [12].

An instance of the occurrence of a concentration function in arithmetic is related
to the old conjecture of Erdos according to which almost all integers possess at least
two divisors d, d', with the property that d < d' ^ Id. Let n be a positive integer and
let Qn(t) denote the concentration function of the random variable Dn taking the
values \ogd, as d runs through all divisors of «, with equal probability 1/T(«). In
Erdos's conjecture, if one replaces the constant 2 by e (which has no important
consequence), an alternative statement is

&(n):=T(n)Qn(l) = max card {d:d\n,e* <d^ex+1}> 1, p.p.
X

Here and throughout the paper the notation p.p. indicates that a relation holds in
a sequence of asymptotic density 1.

The function A(«) was studied in several recent papers [3,7,8,10,11], and in
particular it was shown by Hooley that its average order has many applications in
different branches of number theory. In [11], we showed that

A(«)>(loglog«)^, p.p.,

for any y < —Iog2/log(l — l/log3) = 0.28754 This settled Erdos's conjecture, and
it seemed desirable to obtain a satisfactory upper estimate for the normal order of
the A-function.

Sperner's theorem readily implies (see [10]) that for square-free n

where co(n) stands for the number of distinct prime factors of n. The same inequality
(possibly with another constant) follows for all n from the Kolmogorov-Rogozin
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inequality on concentration functions (see [9]) on noticing that Dn can be written
canonically as a sum of independent random variables:

Dn= £ DpV.
Pv\\n

The above upper bound is optimal, but it can be expected that it is only attained
for scarce exceptional integers and that A(«) is usually much smaller. Indeed, estimates
of the type

A(n)<e(\ogn)«+e, p.p.,

have been obtained in turn with fairly small values of a. Hooley's average bound [10]
implies that a ^ (4/n)-\ = 0.27323..., and Hall and Tenenbaum prove in [7] that
a ^ (Iog2) (1 - l/log3) = 0.06221....

In this paper, our aim is to establish the following result, showing that a power
of log log n is the right order of magnitude for the normal behaviour of A(«).

THEOREM. Let \f/{n) -*• oo as slowly as we wish. Then

A(«) < y/(n) log \ogn, p.p.

It is shown in [7] that the average order of A(«) is at least C log log/?. It could be
that this mean value is dominated by those integers n such that
coin) = (1+0(1)) log log" a nd that A(«)/log logw has a distribution function. Our
methods do not seem delicate enough, at present, to yield such a result.

2. Notation and conventions

In the sequel £, = £(x) is a function tending to infinity with x, arbitrarily slowly.
It will be convenient to suppose that it takes integer values.

The letter/? denotes exclusively a prime number; co(n) (respectively fi(«)) stands
for the number of prime factors of n counted without (respectively with) multiplicity.
We designate by py{n) < ... < pa(n) the ordered sequence of the distinct prime factors
of n and set P-(ri)=pl(n), P+(n) = pw(n). By convention, P~{\) = +oo, P+(l) = 1.

For n ^ x, we define

K = K{n,x) = max{fc, 1 ^ k ^ co(n): pk{n) < exp exp (log log*—£(*))}
and we put

f n Pj(n), z<k^K,
k | « K , k>K.

We use the notation p.p. to indicate that a relation holds in a sequence of
asymptotic density 1; the notation p.p.* means for at least x+o(x) integers ^ x. We
put L = L(x) = [21oglogx]. Finally, we write (u)+ = max(u,0), for ueU.

3. Preliminary results

We shall need the following lemmas.

LEMMA 1. Letfbe a real multiplicative function such that, for allp, 0 ^ f{pv) ^ lx k\,
for v = 0,1,2,..., with 0 < Xlt 0 < X2 < 2. Then, for all x ^ 1, we have

2 M<xux,x n (1-/T1) I fipv)p~\
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This is a weak form of a theorem of Halberstam and Richert [6] generalizing a
result of Hall; it has an elementary proof.

The next lemma is included in [4, Lemme 11]. A stronger version, which we shall
not need here, appears in [13].

LEMMA 2. For 2 ^ u ^ v ̂  x, we have

card {n ^ x: Yl pv ̂ v}-4 xexpl —c- ),
pv\\n,pZu V lOgW/

where c is a positive absolute constant.

COROLLARY. We have

loglog«K <loglogx-K(*), p.p.*. (1)

LEMMA 3. We have

"(" /«*)< (2 + o(l)K(x), p.p.*. (2)

K< L, p.p.*. (3)

This follows immediately from the Turan-Kubilius inequality.

LEMMA 4. Let e > 0 be fixed. We have

(\-e)k<\og\ogpk{n)<(\+e)k, £ < k ^ K, p.p.*. (4)

This is a classical result of Erdos [1].

Henceforth, we fix e > 0 sufficiently small. For £ < k ^ L, we define A,,, as the set of
all integers a satisfying the following conditions:

//(a)2 = 1, co(a) = k-£, log logP+(a) < log log*-

log log a < log log x - g(x), (Ak)

(1 -e)(j+O < log \ogPj(a) < (1 +e)(j+&, 1 £j £*-<;.,
Set

A:={n£x:nkeAk(£<k£K)}.

By the corollary to Lemma 2, and Lemmas 3, 4, we see that

neA, p.p.*.

The next lemma concerns the quantity

Sk(x, a): = card {n e A: nk = a}.

LEMMA 5. For £ < k ^ L, aeAk, and P+(a) < p < exp exp (log logx — <̂ (*)), we
have

Sk+i(x> aP) < exp ((1 + e) £ - (1 - e) k) x/ap.
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Proof Let b denote a generic interger such that co(b) = £,, fi(b)2 = 1, and
P+(b) < P~(a). Then

Sk+l(x> aP) ^ 2 £ Am)>
b m^z/abp

where/is the strongly multiplicative function defined by

[0 ifp'^p and p'Jfabp,
1 otherwise.

Since b < exp{<^e(1+e)(^+1)} = xoW and ap = xo(1),wehave/? < x/abp for every/? and we
may estimate the inner sum by Lemma 1. It comes to

Sk+1(x, ap) <! £ <̂  I I (1
6 viobp) log/? ap log/? v> < e x p e x p ((1+£) (<c+1))

This easily implies the desired result.

We now define for positive integer n and real u

A(n,u):= card {d:d\n,u < logd^ u+l}.

Thus A(ri) = maxu A(«, u). For integer q ^ 1, we put

=
J -

LEMMA 6. For n, gf ^ 1, we have

yiv, (5)

J ^ ) . (6)

Proof. Let «0 be such that A(«, M0) = A(n). Then one of the two intervals
(eu<>, eMo+l]5 (e

Mo+£, gMo+1] contains at least £A(n) divisors of «. Suppose for instance
it is the first. Then A(«, u) ^ £A(«) for u0—\ < u ^ M0. This implies (5).

Set 5(n, M) = A(«, M) +A(« ,«+ 1), for we R. By a classical inequality

whence r1-00

The left-hand side of this inequality is equal to

n
di dg\n

This completes the proof.

We shall need an upper bound for A(nk) in terms of Mq{nk) sharper than (5) for
q close to k. This is the content of Lemma 8 below. The next two results are
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preparatory estimates for the proof of this lemma. For v ̂  0, we denote by n(v) the
largest divisor m of n such that P+{m) < exp exp y.

LEMMA 7. Put ex = e1"26. There exists a positive constant A(e), depending only on
e, such that for v ̂  log log A;—%£(x),

card {n ̂ x:3d,d\n(v),d*d,\log (d/d)\ ^ Q/eJ-"} < xv~x^.

Proof. Set Q(w, /): = I v. By Lemma 1, we have for 0 < y < 2, 2 ̂  t^ x,
Pv\\n,p£t

that
yQ(n,t)-y \oglogt <£ y

with Q(y) = y\ogy—y+\ ^.0. Choosing j>= l+ | e and taking successively
t = tk = exp (ekv log (3/eJ), k = 0,1,2,..., we obtain that

t*(3/ey, (7)

except for at most O(x v~Qa+*e)) integers n ̂  x.
Next, we use the method developed in [2]. Disregarding the exceptions above, the

integers having the required property contribute at least 1 in the following sum:

^ g ^ 0 < Z ^ l , (8)
£x dd'\n(v)

where the dash indicates that d, d satisfy 0 < \og(d/a") ^ (3/e1)~
u. Indeed, this last

condition ensures that d^(3/e1)
v (since log(d/a") ^ \og(d/(d-\)) ^ \/d), and we

deduce that the inner sum is ^ 1 if it is not empty and n satisfies (7).
The computations are similar to those in [2]. We write n = mdd, permute

summations and estimate the m-sum by Lemma 1. To deal with the d-sxxm, we ignore
the condition P+(d) < exp exp v and we match the trivial bound obtained in replacing

) by 1 against the bound yielded by partial summation using the classical formula

proved by contour integration. We obtain that the d-sum is

< z (3/ei)-» d min (1, (log d)*~l (1 + (3/ei)71og d)).

We then complete the calculation with the help of the following estimate proved in
[4, Lemme 10]:

X 2PW 4: z tv(log w)2"1 exp ( - c e~v log w), w ̂  2,
d^w

P+(d)<expexpw

where c is a positive absolute constant. Selecting z = \, we find that (8) is

<3 x(31+E/e)v(3/e1)-
v = x(e2/3)~EV.

This implies the stated result.

COROLLARY. We have

d,d\nk, d*d^\\og(d/d)\>(3/e2)-
k, £<k^K, p.p.*,

where e2 = e2(e) -> e as e -*• 0.
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Proof. By Lemma 4, we have that nk \ n((\+e)k), £ < k ^ K, p.p.*. Choosing
successively, in Lemma 7, v = vi = (1 +e)} for all possible^ > (log^)/log(l +e), we see
that the total number of exceptional integers is o(x). Since for every k,£ < k^ K, there
is vi such that (1 +e)k < Vj ^ (1 +e)2 k, this proves the corollary.

LEMMA 8. Let e2 be as in the corollary above. We have

A(nk) ^ 1 + (3/O*/« Mq(nky/«, Z<k^K,qZ\, p.p.*.

Proof. Let u0 be such that A ^ , u0) = A ^ ) , and let dlf d2, dx < d2, be the two
smaller divisors of nk in (euo,euo+r\. By the above corollary, we have

logf/2>log^ + (3/e2)-*, ^<k^K, p.p.x

Thus &(nk,u) ^ A^)— 1 for log^ ^ u < \ogd2, that is on an interval of length
^ (3/e2)~*. This implies that

Mq(nk) Z (A(nk)- l)«(3/e2)~*, ^ ^ A , ^ ! , p.p.x.

This is all that is required.

4. Proof of the theorem

The trivial inequality (see [10 p. 119]) A(ab) ^ A(a) T(6), for a, b ^ 1, and (2) imply
that

p.p.x. (9)
We are going to prove that

A(nK) < K, p.p.*.

Together with (3) and the fact that the growth of ̂  is arbitrary, this will be sufficient
to yield the result wanted.

The starting point is the identity

A(«*+i> u) = A(nk, u) + A(nk, u - \ogpk+1(n)), £ < k < K,

from which the following formula is immediately derived:

MJnk+l) = 2MJnk)+ I (q) f " A(^, u)> A(nk, u - log p k+1(n))^ du. (10)

The method we then use is rather novel. It consists of averaging this relation over
all numbers n with fixed nk and variable pk+1(ri). This gives a set of inequalities relating
Mq(nk+1) and the Mj(nk), 1 ^j ^q. The proof can then be completed by a simple
recurrence procedure.

For £ < k ^ L, aeAk, 1 ^y ^ <7~ 1, we put
p+oo

tya, x):= E A(a, u)* A(a, u - logpk+1(n))^ du
neA, nk-a J-co

x)>k
r+oo

+ Sk+l(x,ap) A(a,uyA(a,u-\ogp)«-idu
(a) J-oo

k
K(n,x)>k

p>P (a)
apeAk+1
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by Lemma 5. Expanding AQ~1 as a multiple sum, we find that the p-sum is equal to

1* £ ]- : /?> i*(a),w-log m i n ^ < log/? ^w-(log max^)+ l | , (11)
dx,...,dq-j\a W J

where the star indicates that the summation is restricted to those (q — y)-uples of
divisors of a such that log ((max ^)/(min d^) ^ 1. In the inner sum/? covers an interval
with bounds ea, eP, say. By the prime number theorem, this is $ dv/v + 0(exp( - cy/oi)).
We then rearrange the main terms and add the remainders, noticing that
a > logP+(a) > e{l~e)k. This shows that (11) is equal to

J'+o° do

A(a, u - vy-i—+0{M*_t{a) exp ( - cXk))
log P+(a) v

with X = e2(1~e). Estimating Mj_/a) by Lemma 6 and using the fact that
v ^ log-P^a) > ea~E)lc, we get

Tfax) < -a exp((l +fi)«J-2(l -e)k)Mj(a)Mg_j(a)(\+2« exp(A:-a&)). (12)

Put Ra(n):= I MAn)Ma_An). By (10) and (12) we have, uniformly in k with
j-i \jJ

i <k^L and q ^ 2, that

neA ^gKnkJ u

nk-a

Next we sum this estimate over aeAk, noticing that

1

aeAk
 a (l-e) £ < loglog p < (l+e) k

We obtain

exp(-( l -
neA

By a standard argument, this implies that for each k, £ < k ^ L, the following set of
inequalities hold for all but at most O(x e~ek) integers n of A:

Mq{nk+1) <> 2Mq(nk) + e - ^ k R g ( n k ) , X ^ q ^ k . (13)

Summing the number of exceptional integers for £ < k ^ L, we obtain that (13) holds
uniformly in k, £, < k ^ K, p.p.*.

We shall prove by induction on k, £ < k ^ K, that

Mg(nk)£2**q\, 1 g q <, k, p.p.x, (14)

where 8 is a constant such that

1 <<5<(l-7e)/log2.

To lighten the presentation, we put e3:= e(1~1E).
For k = £+1, we have Mq(nk) = 2 for every # ^ 1 and every « in A, thus (14) is
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verified. Suppose it is still true for k. Uq ^ k, we can use (14) to estimate the right-hand
side of (13). It becomes

if £, and therefore k, is large enough.
If q = k+1, we can still use (14) to bound Rq(nk) which only contains Mj(nk) with

j ^q—\ = k, but we need some extra information to estimate Mq(nk). We have

Mk+1(nk) Z A(nk)Mk(nk) ^ Mk(

by Lemma 8 with q = k. Whence

e-e

by Stirling's formula. Eventually we obtain, by (13), that

Mk+1(nk+1) <
e-e2

if e is small enough and t, large enough. This completes the proof of (14). In particular

MK{nK)^2&KK\, p.p.x,

whence by (5) &{nK)< K, p.p.x.

This completes the proof.
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