ON THE NORMAL CONCENTRATION OF DIVISORS

H. MAIER and G. TENENBAUM

1. Introduction

The concept of concentration function was introduced in 1937 by Paul Lévy as a tool for the study of sums of random variables. It is defined, for any random variable X with distribution function F, as

$$
Q(l)=\sup _{x \in \mathrm{R}}(F(x+l)-F(x)), \quad l>0
$$

Since then, concentration functions have been used by probabilists mainly to investigate convergence problems, but they have also been applied to several other questions. A full account of the subject may be found in [9].

In number theory, the study of concentration functions has been initiated by Erdös who considered the case of additive arithmetical functions [1]. More recent work in this direction is due to Halász [5] and Ruzsa [12].

An instance of the occurrence of a concentration function in arithmetic is related to the old conjecture of Erdös according to which almost all integers possess at least two divisors d, d^{\prime}, with the property that $d<d^{\prime} \leqq 2 d^{\prime}$. Let n be a positive integer and let $Q_{n}(l)$ denote the concentration function of the random variable D_{n} taking the values $\log d$, as d runs through all divisors of n, with equal probability $1 / \tau(n)$. In Erdös's conjecture, if one replaces the constant 2 by e (which has no important consequence), an alternative statement is

$$
\Delta(n):=\tau(n) Q_{n}(1)=\max _{x} \operatorname{card}\left\{d: d \mid n, e^{x}<d \leqq e^{x+1}\right\}>1, \quad \text { p.p. }
$$

Here and throughout the paper the notation p.p. indicates that a relation holds in a sequence of asymptotic density 1 .

The function $\Delta(n)$ was studied in several recent papers $[3,7,8,10,11]$, and in particular it was shown by Hooley that its average order has many applications in different branches of number theory. In [11], we showed that

$$
\Delta(n)>(\log \log n)^{\gamma}, \quad \text { p.p., }
$$

for any $\gamma<-\log 2 / \log (1-1 / \log 3)=0.28754 \ldots$. This settled Erdös's conjecture, and it seemed desirable to obtain a satisfactory upper estimate for the normal order of the Δ-function.

Sperner's theorem readily implies (see [10]) that for square-free n

$$
\Delta(n) \leqq 2\binom{\omega(n)}{\frac{1}{2} \omega(n)} \leqq 2 \tau(n) \omega(n)^{-\frac{1}{2}},
$$

where $\omega(n)$ stands for the number of distinct prime factors of n. The same inequality (possibly with another constant) follows for all n from the Kolmogorov-Rogozin
inequality on concentration functions (see [9]) on noticing that D_{n} can be written canonically as a sum of independent random variables:

$$
D_{n}=\sum_{p^{v} \| n} D_{p^{v}}
$$

The above upper bound is optimal, but it can be expected that it is only attained for scarce exceptional integers and that $\Delta(n)$ is usually much smaller. Indeed, estimates of the type

$$
\Delta(n)<_{\varepsilon}(\log n)^{\alpha+\varepsilon}, \quad \text { p.p. }
$$

have been obtained in turn with fairly small values of α. Hooley's average bound [10] implies that $\alpha \leqq(4 / \pi)-1=0.27323 \ldots$, and Hall and Tenenbaum prove in [7] that $\alpha \leqq(\log 2)(1-1 / \log 3)=0.06221 \ldots$.

In this paper, our aim is to establish the following result, showing that a power of $\log \log n$ is the right order of magnitude for the normal behaviour of $\Delta(n)$.

Theorem. Let $\psi(n) \rightarrow \infty$ as slowly as we wish. Then

$$
\Delta(n)<\psi(n) \log \log n, \quad \text { p.p. }
$$

It is shown in [7] that the average order of $\Delta(n)$ is at least $C \log \log n$. It could be that this mean value is dominated by those integers n such that $\omega(n)=(1+o(1)) \log \log n$ and that $\Delta(n) / \log \log n$ has a distribution function. Our methods do not seem delicate enough, at present, to yield such a result.

2. Notation and conventions

In the sequel $\xi=\xi(x)$ is a function tending to infinity with x, arbitrarily slowly. It will be convenient to suppose that it takes integer values.

The letter p denotes exclusively a prime number; $\omega(n)$ (respectively $\Omega(n)$) stands for the number of prime factors of n counted without (respectively with) multiplicity. We designate by $p_{1}(n)<\ldots<p_{\omega}(n)$ the ordered sequence of the distinct prime factors of n and set $P^{-}(n)=p_{1}(n), P^{+}(n)=p_{\omega}(n)$. By convention, $P^{-}(1)=+\infty, P^{+}(1)=1$.

For $n \leqq x$, we define

$$
K=K(n, x)=\max \left\{k, 1 \leqq k \leqq \omega(n): p_{k}(n)<\exp \exp (\log \log x-\xi(x))\right\}
$$

and we put

$$
n_{k}= \begin{cases}\prod_{\xi<j \leqq k} p_{j}(n), & \xi<k \leqq K, \\ n_{K}, & k>K .\end{cases}
$$

We use the notation p.p. to indicate that a relation holds in a sequence of asymptotic density 1 ; the notation p.p. x means for at least $x+o(x)$ integers $\leqq x$. We put $L=L(x)=[2 \log \log x]$. Finally, we write $(u)^{+}=\max (u, 0)$, for $u \in \mathbb{R}$.

3. Preliminary results

We shall need the following lemmas.
Lemma 1. Let fbe a realmultiplicative function such that, for allp, $0 \leqq f\left(p^{v}\right) \leqq \lambda_{1} \lambda_{2}^{v}$, for $v=0,1,2, \ldots$, with $0<\lambda_{1}, 0<\lambda_{2}<2$. Then, for all $x \geqq 1$, we have

$$
\sum_{n \leqq x} f(n)<_{\lambda_{1}, \lambda_{2}} x \prod_{p \leqq x}\left(1-p^{-1}\right) \sum_{v=0}^{\infty} f\left(p^{\nu}\right) p^{-v}
$$

This is a weak form of a theorem of Halberstam and Richert [6] generalizing a result of Hall; it has an elementary proof.

The next lemma is included in [4, Lemme 11]. A stronger version, which we shall not need here, appears in [13].

Lemma 2. For $2 \leqq u \leqq v \leqq x$, we have

$$
\operatorname{card}\left\{n \leqq x: \prod_{p^{\nu} \| n, p \leqq u} p^{\nu} \geqq v\right\} \ll x \exp \left(-c \frac{\log v}{\log u}\right)
$$

where c is a positive absolute constant.

Corollary. We have

$$
\begin{equation*}
\log \log n_{K}<\log \log x-\frac{1}{2} \xi(x), \quad \text { p.p. } x . \tag{1}
\end{equation*}
$$

Lemma 3. We have

$$
\begin{gather*}
\Omega\left(n / n_{K}\right)<(2+o(1)) \xi(x), \quad \text { p.p. } x . \tag{2}\\
K<L, \quad \text { p.p. } x \tag{3}
\end{gather*}
$$

This follows immediately from the Turán-Kubilius inequality.

Lemma 4. Let $\varepsilon>0$ be fixed. We have

$$
\begin{equation*}
(1-\varepsilon) k<\log \log p_{k}(n)<(1+\varepsilon) k, \quad \xi<k \leqq K, \quad \text { p.p.x. } \tag{4}
\end{equation*}
$$

This is a classical result of Erdös [1].
Henceforth, we fix $\varepsilon>0$ sufficiently small. For $\xi<k \leqq L$, we define A_{k} as the set of all integers a satisfying the following conditions:

$$
\left.\begin{array}{l}
\mu(a)^{2}=1, \omega(a)=k-\xi, \log \log P^{+}(a)<\log \log x-\xi(x) \tag{k}\\
\log \log a<\log \log x-\frac{1}{2} \xi(x) \\
(1-\varepsilon)(j+\xi)<\log \log p_{j}(a)<(1+\varepsilon)(j+\xi), 1 \leqq j \leqq k-\xi .
\end{array}\right\}
$$

Set

$$
A:=\left\{n \leqq x: n_{k} \in A_{k}(\xi<k \leqq K)\right\}
$$

By the corollary to Lemma 2, and Lemmas 3, 4, we see that

$$
n \in A, \quad \text { p.p. } x .
$$

The next lemma concerns the quantity

$$
S_{k}(x, a):=\operatorname{card}\left\{n \in A: n_{k}=a\right\} .
$$

Lemma 5. For $\xi<k \leqq L, a \in A_{k}$, and $P^{+}(a)<p<\exp \exp (\log \log x-\xi(x))$, we have

$$
S_{k+1}(x, a p) \ll \exp ((1+\varepsilon) \xi-(1-\varepsilon) k) x / a p
$$

Proof. Let b denote a generic interger such that $\omega(b)=\xi, \mu(b)^{2}=1$, and $P^{+}(b)<P^{-}(a)$. Then

$$
S_{k+1}(x, a p) \ll \sum_{b} \sum_{m \leqq x / a b p} f(m)
$$

where f is the strongly multiplicative function defined by

$$
f\left(p^{\prime}\right)= \begin{cases}0 & \text { if } p^{\prime} \leqq p \text { and } p^{\prime} \npreceq a b p \\ 1 & \text { otherwise }\end{cases}
$$

Since $b<\exp \left\{\xi e^{(1+\varepsilon)(\xi+1)}\right\}=x^{o(1)}$ and $a p=x^{o(1)}$, we have $p<x / a b p$ for every b and we may estimate the inner sum by Lemma 1 . It comes to

$$
S_{k+1}(x, a p) \ll \sum_{b} \frac{x}{\phi(a b p) \log p} \ll \frac{x}{a p \log p} \prod_{p^{\prime}<\exp \exp ((1+\varepsilon)(\xi+1))}\left(1+1 /\left(p^{\prime}-1\right)\right) .
$$

This easily implies the desired result.
We now define for positive integer n and real u

$$
\Delta(n, u):=\operatorname{card}\{d: d \mid n, u<\log d \leqq u+1\}
$$

Thus $\Delta(n)=\max _{u} \Delta(n, u)$. For integer $q \geqq 1$, we put

$$
\begin{aligned}
& M_{q}(n):=\int_{-\infty}^{+\infty} \Delta(n, u)^{q} d u \\
& M_{q}^{*}(n):=\Sigma\left\{1: d_{1}, \ldots, d_{q} \mid n, \log \left(\frac{\max d_{i}}{\min d_{i}}\right) \leqq 1\right\}
\end{aligned}
$$

Lemma 6. For $n, q \geqq 1$, we have

$$
\begin{gather*}
\Delta(n) \leqq 2^{1+1 / q} M_{q}(n)^{1 / q} \tag{5}\\
M_{q}^{*}(n) \leqq 2^{q} M_{q}(n) \tag{6}
\end{gather*}
$$

Proof. Let u_{0} be such that $\Delta\left(n, u_{0}\right)=\Delta(n)$. Then one of the two intervals ($\left.e^{u_{0}}, e^{u_{0}+\frac{1}{2}}\right],\left(e^{u_{0}+\frac{1}{2}}, e^{u_{0}+1}\right]$ contains at least $\frac{1}{2} \Delta(n)$ divisors of n. Suppose for instance it is the first. Then $\Delta(n, u) \geqq \frac{1}{2} \Delta(n)$ for $u_{0}-\frac{1}{2}<u \leqq u_{0}$. This implies (5).

Set $\bar{\Delta}(n, u)=\Delta(n, u)+\Delta(n, u+1)$, for $u \in \mathbb{R}$. By a classical inequality

$$
\bar{\Delta}(n, u)^{q} \leqq 2^{q-1}\left(\Delta(n, u)^{q}+\Delta(n, u+1)^{q}\right)
$$

whence

$$
\int_{-\infty}^{+\infty} \bar{\Delta}(n, u)^{q} d u \leqq 2^{q} M_{q}(n)
$$

The left-hand side of this inequality is equal to

$$
\prod_{d_{1}, \ldots, d_{q} \mid n}\left(2-\log \left(\frac{\max d_{i}}{\min d_{i}}\right)\right)^{+} \geqq M_{q}^{*}(n)
$$

This completes the proof.
We shall need an upper bound for $\Delta\left(n_{k}\right)$ in terms of $M_{q}\left(n_{k}\right)$ sharper than (5) for q close to k. This is the content of Lemma 8 below. The next two results are
preparatory estimates for the proof of this lemma. For $v \geqq 0$, we denote by $n(v)$ the largest divisor m of n such that $P^{+}(m)<\operatorname{expexp} v$.

Lemma 7. Put $e_{1}=e^{1-2 \varepsilon}$. There exists a positive constant $\lambda(\varepsilon)$, depending only on ε, such that for $v \leqq \log \log x-\frac{1}{2} \xi(x)$,

$$
\operatorname{card}\left\{n \leqq x: \exists d, d^{\prime}\left|n(v), d \neq d^{\prime},\left|\log \left(d^{\prime} / d\right)\right| \leqq\left(3 / e_{1}\right)^{-v}\right\} \ll x v^{-\lambda(\varepsilon)}\right.
$$

Proof. Set $\Omega(n, t):=\underset{p^{\nu} \| n, p \leqq t}{ } \nu$. By Lemma 1, we have for $0<y<2,2 \leqq t \leqq x$, that

$$
\sum_{n \leqq x} y^{\Omega(n, t)-y \log \log t}<_{y} x(\log t)^{-Q(y)}
$$

with $Q(y)=y \log y-y+1 \geqq 0$. Choosing $y=1+\frac{1}{2} \varepsilon$ and taking successively $t=t_{k}=\exp \left(e^{k} v \log \left(3 / e_{1}\right)\right), k=0,1,2, \ldots$, we obtain that

$$
\begin{equation*}
\Omega(n, t)<(1+\varepsilon) \log \log t, \quad t \geqq\left(3 / e_{1}\right)^{v}, \tag{7}
\end{equation*}
$$

except for at most $O\left(x v^{-Q\left(1+\frac{1}{2} \varepsilon\right)}\right)$ integers $n \leqq x$.
Next, we use the method developed in [2]. Disregarding the exceptions above, the integers having the required property contribute at least 1 in the following sum:

$$
\begin{equation*}
\sum_{n \leqq x} \sum_{d d^{\prime} \mid n(v)}^{\prime} z^{\Omega(n, d)}(\log d)^{-(1+\varepsilon) \log z}, \quad 0<z \leqq 1 \tag{8}
\end{equation*}
$$

where the dash indicates that d, d^{\prime} satisfy $0<\log \left(d / d^{\prime}\right) \leqq\left(3 / e_{1}\right)^{-v}$. Indeed, this last condition ensures that $d \geqq\left(3 / e_{1}\right)^{v}$ (since $\left.\log \left(d / d^{\prime}\right) \geqq \log (d /(d-1)) \geqq 1 / d\right)$, and we deduce that the inner sum is $\geqq 1$ if it is not empty and n satisfies (7).

The computations are similar to those in [2]. We write $n=m d d^{\prime}$, permute summations and estimate the m-sum by Lemma 1 . To deal with the d^{\prime}-sum, we ignore the condition $P^{+}\left(d^{\prime}\right)<\operatorname{expexp} v$ and we match the trivial bound obtained in replacing $z^{\Omega\left(d^{\prime}\right)}$ by 1 against the bound yielded by partial summation using the classical formula

$$
\sum_{d^{\prime} \leqq w} z^{\Omega\left(d^{\prime}\right)}=C(z) w(\log w)^{z-1}\left(1+O_{z}(1 / \log w)\right), \quad w \geqq 2
$$

proved by contour integration. We obtain that the d^{\prime}-sum is

$$
<_{z}\left(3 / e_{1}\right)^{-v} d \min \left(1,(\log d)^{z-1}\left(1+\left(3 / e_{1}\right)^{v} / \log d\right)\right)
$$

We then complete the calculation with the help of the following estimate proved in [4, Lemme 10]:

$$
\sum_{\substack{d \leqq w \\ P^{+}(d)<\exp \exp v}} z^{\Omega(d)}<_{z} w(\log w)^{z-1} \exp \left(-c e^{-v} \log w\right), \quad w \geqq 2,
$$

where c is a positive absolute constant. Selecting $z=\frac{1}{3}$, we find that (8) is

$$
\ll x\left(3^{1+\varepsilon} / e\right)^{v}\left(3 / e_{1}\right)^{-v}=x\left(e^{2} / 3\right)^{-\varepsilon v} .
$$

This implies the stated result.
Corollary. We have

$$
d, d^{\prime}\left|n_{k}, \quad d \neq d^{\prime} \Rightarrow\right| \log \left(d / d^{\prime}\right) \mid>\left(3 / e_{2}\right)^{-k}, \quad \xi<k \leqq K, \quad \text { p.p. } x
$$

where $e_{2}=e_{2}(\varepsilon) \rightarrow e$ as $\varepsilon \rightarrow 0$.

Proof. By Lemma 4, we have that $n_{k} \mid n((1+\varepsilon) k), \xi<k \leqq K$, p.p. x. Choosing successively, in Lemma 7, $v=v_{j}=(1+\varepsilon)^{j}$ for all possible $j>(\log \xi) / \log (1+\varepsilon)$, we see that the total number of exceptional integers is $o(x)$. Since for every $k, \xi<k \leqq K$, there is v_{j} such that $(1+\varepsilon) k<v_{j} \leqq(1+\varepsilon)^{2} k$, this proves the corollary.

Lemma 8. Let e_{2} be as in the corollary above. We have

$$
\Delta\left(n_{k}\right) \leqq 1+\left(3 / e_{2}\right)^{k / q} M_{q}\left(n_{k}\right)^{1 / q}, \quad \xi<k \leqq K, q \geqq 1, \quad \text { p.p. } x .
$$

Proof. Let u_{0} be such that $\Delta\left(n_{k}, u_{0}\right)=\Delta\left(n_{k}\right)$, and let $d_{1}, d_{2}, d_{1}<d_{2}$, be the two smaller divisors of n_{k} in ($e^{u_{0}}, e^{u_{0}+1}$]. By the above corollary, we have

$$
\log d_{2}>\log d_{1}+\left(3 / e_{2}\right)^{-k}, \quad \xi<k \leqq K, \quad \text { p.p.x. }
$$

Thus $\Delta\left(n_{k}, u\right) \geqq \Delta\left(n_{k}\right)-1$ for $\log d_{1} \leqq u<\log d_{2}$, that is on an interval of length $\geqq\left(3 / e_{2}\right)^{-k}$. This implies that

$$
M_{q}\left(n_{k}\right) \geqq\left(\Delta\left(n_{k}\right)-1\right)^{q}\left(3 / e_{2}\right)^{-k}, \quad \xi<k \leqq K, q \geqq 1, \quad \text { p.p.x. }
$$

This is all that is required.

4. Proof of the theorem

The trivial inequality (see [10 p. 119]) $\Delta(a b) \leqq \Delta(a) \tau(b)$, for $a, b \geqq 1$, and (2) imply that

$$
\begin{equation*}
\Delta(n) \leqq \Delta\left(n_{K}\right) 4^{(1+o(1)) \xi}, \quad \text { p.p. } x . \tag{9}
\end{equation*}
$$

We are going to prove that

$$
\Delta\left(n_{K}\right) \ll K, \quad \text { p.p. } x .
$$

Together with (3) and the fact that the growth of ξ is arbitrary, this will be sufficient to yield the result wanted.

The starting point is the identity

$$
\Delta\left(n_{k+1}, u\right)=\Delta\left(n_{k}, u\right)+\Delta\left(n_{k}, u-\log p_{k+1}(n)\right), \quad \xi<k<K
$$

from which the following formula is immediately derived:

$$
\begin{equation*}
M_{q}\left(n_{k+1}\right)=2 M_{q}\left(n_{k}\right)+\sum_{j=1}^{k}\binom{q}{j} \int_{-\infty}^{+\infty} \Delta\left(n_{k}, u\right)^{j} \Delta\left(n_{k}, u-\log p_{k+1}(n)\right)^{q-j} d u \tag{10}
\end{equation*}
$$

The method we then use is rather novel. It consists of averaging this relation over all numbers n with fixed n_{k} and variable $p_{k+1}(n)$. This gives a set of inequalities relating $M_{q}\left(n_{k+1}\right)$ and the $M_{j}\left(n_{k}\right), 1 \leqq j \leqq q$. The proof can then be completed by a simple recurrence procedure.

For $\xi<k \leqq L, a \in A_{k}, 1 \leqq j \leqq q-1$, we put

$$
\begin{aligned}
T_{j}(a, x): & =\sum_{\substack{n \in A, n_{k}-a \\
K(n, x)>k}} \int_{-\infty}^{+\infty} \Delta(a, u)^{j} \Delta\left(a, u-\log p_{k+1}(n)\right)^{q-j} d u \\
& \leqq \sum_{\substack{p>P^{+}(a) \\
a p \in A_{k+1}}} S_{k+1}(x, a p) \int_{-\infty}^{+\infty} \Delta(a, u)^{j} \Delta(a, u-\log p)^{q-j} d u \\
& \ll \frac{x}{a} \exp ((1+\varepsilon) \xi-(1-\varepsilon) k) \int_{-\infty}^{+\infty} \Delta(a, u)^{j} \sum_{p>P^{+}(a)} \frac{\Delta(a, u-\log p)^{q-j}}{p} d u
\end{aligned}
$$

by Lemma 5. Expanding Δ^{q-j} as a multiple sum, we find that the p-sum is equal to

$$
\begin{equation*}
\underset{d_{1}, \ldots, d_{q-j} \mid a}{\Sigma^{*}} \Sigma\left\{\frac{1}{p}: p>P^{+}(a), u-\log \min d_{i}<\log p \leqq u-\left(\log \max d_{i}\right)+1\right\} \tag{11}
\end{equation*}
$$

where the star indicates that the summation is restricted to those $(q-j)$-uples of divisors of a such that $\log \left(\left(\max d_{i}\right) /\left(\min d_{i}\right)\right) \leqq 1$. In the inner sum p covers an interval with bounds e^{α}, e^{β}, say. By the prime number theorem, this is $\int_{\alpha}^{\beta} d v / v+O(\exp (-c \sqrt{ } \alpha))$. We then rearrange the main terms and add the remainders, noticing that $\alpha>\log P^{+}(a)>e^{(1-\varepsilon) k}$. This shows that (11) is equal to

$$
\int_{\log P^{+}(a)}^{+\infty} \Delta(a, u-v)^{q-j} \frac{d v}{v}+O\left(M_{q-j}^{*}(a) \exp \left(-c \lambda^{k}\right)\right)
$$

with $\lambda=e^{\frac{1}{2}(1-\varepsilon)}$. Estimating $M_{q-j}^{*}(a)$ by Lemma 6 and using the fact that $v \geqq \log P^{+}(a)>e^{(1-\varepsilon) k}$, we get

$$
\begin{equation*}
T_{j}(a, x) \ll \frac{x}{a} \exp ((1+\varepsilon) \xi-2(1-\varepsilon) k) M_{j}(a) M_{q-j}(a)\left(1+2^{q} \exp \left(k-c \lambda^{k}\right)\right) \tag{12}
\end{equation*}
$$

Put $R_{q}(n):=\sum_{j=1}^{q-1}\binom{q}{j} M_{j}(n) M_{q-j}(n)$. By (10) and (12) we have, uniformly in k with $\xi<k \leqq L$ and $q \geqq 2$, that

$$
\sum_{\substack{n \in A \\ n_{k}-a}} \frac{\left(M_{q}\left(n_{k+1}\right)-2 M_{q}\left(n_{k}\right)\right)^{+}}{R_{q}\left(n_{k}\right)} \ll \frac{x}{a} \exp ((1+\varepsilon) \xi-2(1-\varepsilon) k)\left(1+2^{q} \exp \left(k-c \lambda^{k}\right)\right)
$$

Next we sum this estimate over $a \in A_{k}$, noticing that

$$
\sum_{a \in A_{k}} \frac{1}{a} \leqq \prod_{(1-\varepsilon) \xi<\log \log p<(1+\varepsilon) k}(1+1 / p) \ll \exp ((1+\varepsilon) k-(1-\varepsilon) \xi)
$$

We obtain

$$
\sum_{n \in A} \frac{\left(M_{q}\left(n_{k+1}\right)-2 M_{q}\left(n_{k}\right)\right)^{+}}{R_{q}\left(n_{k}\right)} \ll x \exp (-(1-5 \varepsilon) k)\left(1+2^{q} \exp \left(k-c \lambda^{k}\right)\right)
$$

By a standard argument, this implies that for each $k, \xi<k \leqq L$, the following set of inequalities hold for all but at most $O\left(x e^{-\varepsilon k}\right)$ integers n of A :

$$
\begin{equation*}
M_{q}\left(n_{k+1}\right) \leqq 2 M_{q}\left(n_{k}\right)+e^{-(1-7 \varepsilon) k} R_{q}\left(n_{k}\right), \quad 1 \leqq q \leqq k \tag{13}
\end{equation*}
$$

Summing the number of exceptional integers for $\xi<k \leqq L$, we obtain that (13) holds uniformly in $k, \xi<k \leqq K$, p.p. x.

We shall prove by induction on $k, \xi<k \leqq K$, that

$$
\begin{equation*}
M_{q}\left(n_{k}\right) \leqq 2^{\delta k} q!, \quad 1 \leqq q \leqq k, \quad \text { p.p. } x \tag{14}
\end{equation*}
$$

where δ is a constant such that

$$
1<\delta<(1-7 \varepsilon) / \log 2
$$

To lighten the presentation, we put $e_{3}:=e^{(1-7 \varepsilon)}$.
For $k=\xi+1$, we have $M_{q}\left(n_{k}\right)=2$ for every $q \geqq 1$ and every n in A, thus (14) is
verified. Suppose it is still true for k. If $q \leqq k$, we can use (14) to estimate the right-hand side of (13). It becomes

$$
M_{q}\left(n_{k+1}\right) \leqq 2^{\delta(k+1)} q!\left(2^{1-\delta}+k\left(2^{\delta} / e_{3}\right)^{k}\right) \leqq 2^{\delta(k+1)} q!
$$

if ξ, and therefore k, is large enough.
If $q=k+1$, we can still use (14) to bound $R_{q}\left(n_{k}\right)$ which only contains $M_{j}\left(n_{k}\right)$ with $j \leqq q-1=k$, but we need some extra information to estimate $M_{q}\left(n_{k}\right)$. We have

$$
M_{k+1}\left(n_{k}\right) \leqq \Delta\left(n_{k}\right) M_{k}\left(n_{k}\right) \leqq M_{k}\left(n_{k}\right)+\left(3 / e_{2}\right) M_{k}\left(n_{k}\right)^{(k+1) / k}
$$

by Lemma 8 with $q=k$. Whence

$$
\begin{aligned}
M_{k+1}\left(n_{k}\right) & \leqq 2^{\delta(k+1)}(k+1)!\left(\frac{2^{-\delta}}{k+1}+\frac{3}{e_{2}} \frac{(k!)^{1 / k}}{(k+1)}\right) \\
& \leqq 2^{\delta(k+1)}(k+1)!\left(\frac{3}{e \cdot e_{2}}+o(1)\right)
\end{aligned}
$$

by Stirling's formula. Eventually we obtain, by (13), that

$$
\begin{aligned}
M_{k+1}\left(n_{k+1}\right) & \leqq 2^{\delta(k+1)}(k+1)!\left(\frac{6}{e \cdot e_{2}}+o(1)+k\left(2^{\delta} / e_{3}\right)^{k}\right) \\
& \leqq 2^{\delta(k+1)}(k+1)!
\end{aligned}
$$

if ε is small enough and ξ large enough. This completes the proof of (14). In particular

$$
M_{K}\left(n_{K}\right) \leqq 2^{\delta K} K!, \quad \text { p.p. } x,
$$

whence by (5)

$$
\Delta\left(n_{K}\right) \ll K, \quad \text { p.p. } x .
$$

This completes the proof.

References

1. P. Erdös, 'On the distribution function of additive functions', Ann. of Math., 47 (1946), 1-20.
2. P. Erdös and R. R. Hall, 'The propinquity of divisors', Bull. London Math. Soc., 11 (1979), 304-307.
3. P. Erdös and J.-L. Nicolas, 'Méthodes probabilistes et combinatoires en théorie des nombres', Bull. Sci. Math. (2), 100 (1976), 301-320.
4. P. Erdös and G. Tenenbaum, 'Sur les diviseurs consécutifs d'un entier', Bull. Soc. Math. France, 111 (1983), 125-145.
5. G. HALÁSZ, 'On the distribution of additive arithmetical functions', Acta Arith., 27 (1975), 143-152.
6. H. Halberstam and H.-E. Richert, 'On a result of R. R. Hall', J. Number Theory (1), 11 (1979), 76-89.
7. R. R. Hall and G. Tenenbaum, 'On the average and normal orders of Hooley's Δ-function', J. London Math. Soc. (2), 25 (1982), 392-406.
8. R. R. Hall and G. Tenenbaum, 'The average orders of Hooley's Δ_{r}-functions', Mathematika, 31 (1984), 98-109.
9. W. Hengartner and R. Theodorescu, Concentration functions (Academic Press, London, 1973).
10. C. Hooley, 'On a new technique and its applications to the theory of numbers', Proc. London Math. Soc. (3), 38 (1979), 115-151.
11. H. Maier and G. Tenenbaum, 'On the set of divisors of an integer', Invent. Math., 76 (1984), 121-128.
12. I. Z. Ruzsa, 'On the concentration of additive functions', Acta Math. Acad. Sci. Hungar., 36 (1980), 215-232.
13. G. Tenenbaum, 'Sur la probabilité qu'un entier possède un diviseur dans un intervalle donné', Compositio Math., 51 (1984), 243-263.

Department of Mathematics
University of Georgia
Athens
Georgia 30602
USA

UER Sciences Mathématiques
Université de Nancy I
Boîte Postale 239
54506 Vandoeuvre les Nancy Cedex France

